Dezhi Zhou, B. Dou, F. Kroh, Chuqian Wang, Liliang Ouyang
{"title":"Biofabrication strategies with single-cell resolution: a review","authors":"Dezhi Zhou, B. Dou, F. Kroh, Chuqian Wang, Liliang Ouyang","doi":"10.1088/2631-7990/ace863","DOIUrl":null,"url":null,"abstract":"The introduction of living cells to manufacturing process has enabled the engineering of complex biological tissues in vitro. The recent advances in biofabrication with extremely high resolution (e.g. at single cell level) have greatly enhanced this capacity and opened new avenues for tissue engineering. In this review, we comprehensively overview the current biofabrication strategies with single-cell resolution and categorize them based on the dimension of the single-cell building blocks, i.e. zero-dimensional single-cell droplets, one-dimensional single-cell filaments and two-dimensional single-cell sheets. We provide an informative introduction to the most recent advances in these approaches (e.g. cell trapping, bioprinting, electrospinning, microfluidics and cell sheets) and further illustrated how they can be used in in vitro tissue modelling and regenerative medicine. We highlight the significance of single-cell-level biofabrication and discuss the challenges and opportunities in the field.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ace863","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of living cells to manufacturing process has enabled the engineering of complex biological tissues in vitro. The recent advances in biofabrication with extremely high resolution (e.g. at single cell level) have greatly enhanced this capacity and opened new avenues for tissue engineering. In this review, we comprehensively overview the current biofabrication strategies with single-cell resolution and categorize them based on the dimension of the single-cell building blocks, i.e. zero-dimensional single-cell droplets, one-dimensional single-cell filaments and two-dimensional single-cell sheets. We provide an informative introduction to the most recent advances in these approaches (e.g. cell trapping, bioprinting, electrospinning, microfluidics and cell sheets) and further illustrated how they can be used in in vitro tissue modelling and regenerative medicine. We highlight the significance of single-cell-level biofabrication and discuss the challenges and opportunities in the field.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.