Effect of chitosan modification on PAN/nanosilica adsorptive membrane for quercetin filtration

N. M. Nor, S. A. Hamid, M. S. Shamsudin, S. Ismail
{"title":"Effect of chitosan modification on PAN/nanosilica adsorptive membrane for quercetin filtration","authors":"N. M. Nor, S. A. Hamid, M. S. Shamsudin, S. Ismail","doi":"10.1063/1.5117083","DOIUrl":null,"url":null,"abstract":"Quercetin is a plant pigment from flavonoid group found in many plants and foods such as onions, green tea, apples and berries and can be taken as health supplements to support heart issues and prevent cancer due to the function of antioxidant and anti-inflammatory effects. Basically, quercetin can be easily separated from water sources when it is operated with nanofiltration (NF) and reverse osmosis (RO) mode since the pore size of membrane is very small. However, these processes generally require high operating pressure during treatment process, resulting in significant energy consumption. Thus, an adsorptive membrane is fabricated with microfiltration (MF) range combining polyacrylonitrile (PAN) and nanosilica as the adsorbent to adsorb quercetin on the membrane with lower pressure in the operation. This paper is focused on modification of PAN/Nanosilica adsorptive membrane with chitosan to improve the performance flux and quercetin adsorption varying two membrane modification methods which are chitosan coating and chitosan blending. The adsorptive membrane fabricated using PAN/Nanosilica modified by chitosan coating is found as the best membrane for quercetin filtration compared to PAN/Nanosilica membrane modified by chitosan blending because higher initial flux for pure water and quercetin were achieved and flux reduction for quercetin using PAN/Nanosilica/Chitosan coated membrane is the lowest which is 57.5%.","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quercetin is a plant pigment from flavonoid group found in many plants and foods such as onions, green tea, apples and berries and can be taken as health supplements to support heart issues and prevent cancer due to the function of antioxidant and anti-inflammatory effects. Basically, quercetin can be easily separated from water sources when it is operated with nanofiltration (NF) and reverse osmosis (RO) mode since the pore size of membrane is very small. However, these processes generally require high operating pressure during treatment process, resulting in significant energy consumption. Thus, an adsorptive membrane is fabricated with microfiltration (MF) range combining polyacrylonitrile (PAN) and nanosilica as the adsorbent to adsorb quercetin on the membrane with lower pressure in the operation. This paper is focused on modification of PAN/Nanosilica adsorptive membrane with chitosan to improve the performance flux and quercetin adsorption varying two membrane modification methods which are chitosan coating and chitosan blending. The adsorptive membrane fabricated using PAN/Nanosilica modified by chitosan coating is found as the best membrane for quercetin filtration compared to PAN/Nanosilica membrane modified by chitosan blending because higher initial flux for pure water and quercetin were achieved and flux reduction for quercetin using PAN/Nanosilica/Chitosan coated membrane is the lowest which is 57.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖改性对PAN/纳米二氧化硅吸附膜过滤槲皮素的影响
槲皮素是一种黄酮类植物色素,存在于许多植物和食物中,如洋葱、绿茶、苹果和浆果。槲皮素具有抗氧化和抗炎作用,可以作为健康补充剂来治疗心脏病和预防癌症。由于膜的孔径很小,采用纳滤(NF)和反渗透(RO)方式,基本上可以很容易地从水源中分离槲皮素。然而,这些工艺在处理过程中通常需要较高的操作压力,导致大量的能源消耗。因此,采用微滤(MF)范围结合聚丙烯腈(PAN)和纳米二氧化硅作为吸附剂,制备了一种吸附膜,在操作过程中以较低的压力将槲皮素吸附在膜上。研究了壳聚糖对聚丙烯腈/纳米二氧化硅吸附膜的改性,通过壳聚糖包覆和壳聚糖共混两种膜改性方法,提高了聚丙烯腈/纳米二氧化硅吸附膜的性能通量和槲皮素吸附性能。经壳聚糖包覆改性PAN/纳米二氧化硅制备的吸附膜比壳聚糖共混改性PAN/纳米二氧化硅膜过滤槲皮素的效果更好,因为PAN/纳米二氧化硅/壳聚糖包覆膜对纯水和槲皮素的初始通量更高,对槲皮素的通量降低最低,为57.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent development in the electrochemical conversion of carbon dioxide: Short review Production of dairy cow pellets from pineapple leaf waste Application of response surface methodology to investigate the effect of different variables on fusion slagging index Fabrication and optimization of immobilized bentonite and TiO2 photocatalyst in unilayer and bilayer system for the photocatalytic adsorptive removal of methylene blue dye under UV light Heavy metal ions adsorption from CTA-aliquat 336 polymer inclusion membranes (PIMs): Experimental and kinetic study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1