Liquid-phase microextraction of polycyclic aromatic hydrocarbons: A review

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Reviews in Analytical Chemistry Pub Date : 2020-01-01 DOI:10.1515/revac-2020-0101
V. Jalili, A. Barkhordari, A. Ghiasvand
{"title":"Liquid-phase microextraction of polycyclic aromatic hydrocarbons: A review","authors":"V. Jalili, A. Barkhordari, A. Ghiasvand","doi":"10.1515/revac-2020-0101","DOIUrl":null,"url":null,"abstract":"Abstract Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds comprised of two or more fused benzene rings, which arise from the incomplete combustion of organic materials. These compounds have been of concern as carcinogens and mutagens for the past 50-60 years. Lately, they are also receiving attention as endocrine-disrupting chemicals. Therefore, proper analytical methods are required for sampling and analyzing these compounds. In response to problems associated with the conventional methods like solid-phase extraction (SPE) and liquid-liquid extraction (LLE), many studies have focused on the miniaturization of different sample preparation techniques. In this regard, the use of different types of liquid phase microextraction (LPME) techniques has increased significantly during the recent few decades. LPME techniques are advantageous because they use single-step sample preparation and have shown a greater sensitivity, selectivity, and efficiency than the conventional methods. In addition, these techniques have good potential for automation, to reduce the time and cost of analysis. This review focuses on the most important configurations of LPME including single‐drop microextraction (SDME), hollow-fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) techniques used for the sampling and determination of PAHs in different samples, along with their cons and pros, as well as their prospects.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"43 1","pages":"1 - 19"},"PeriodicalIF":3.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2020-0101","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 26

Abstract

Abstract Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds comprised of two or more fused benzene rings, which arise from the incomplete combustion of organic materials. These compounds have been of concern as carcinogens and mutagens for the past 50-60 years. Lately, they are also receiving attention as endocrine-disrupting chemicals. Therefore, proper analytical methods are required for sampling and analyzing these compounds. In response to problems associated with the conventional methods like solid-phase extraction (SPE) and liquid-liquid extraction (LLE), many studies have focused on the miniaturization of different sample preparation techniques. In this regard, the use of different types of liquid phase microextraction (LPME) techniques has increased significantly during the recent few decades. LPME techniques are advantageous because they use single-step sample preparation and have shown a greater sensitivity, selectivity, and efficiency than the conventional methods. In addition, these techniques have good potential for automation, to reduce the time and cost of analysis. This review focuses on the most important configurations of LPME including single‐drop microextraction (SDME), hollow-fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) techniques used for the sampling and determination of PAHs in different samples, along with their cons and pros, as well as their prospects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多环芳烃液相微萃取研究进展
摘要多环芳烃(PAHs)是由两个或两个以上的苯环组成的一大类有机化合物,是由有机材料的不完全燃烧产生的。在过去的50-60年里,这些化合物作为致癌物和诱变剂一直受到关注。最近,它们也作为干扰内分泌的化学物质而受到关注。因此,需要适当的分析方法对这些化合物进行取样和分析。针对固相萃取(SPE)和液液萃取(LLE)等传统方法存在的问题,许多研究都集中在不同样品制备技术的小型化上。在这方面,近几十年来,不同类型的液相微萃取(LPME)技术的使用显著增加。LPME技术具有优势,因为它们使用单步样品制备,并且比传统方法显示出更高的灵敏度,选择性和效率。此外,这些技术具有很好的自动化潜力,可以减少分析的时间和成本。本文综述了用于不同样品中多环芳烃取样和测定的LPME最重要的配置,包括单滴微萃取(SDME)、中空纤维液相微萃取(HF-LPME)和分散液液微萃取(DLLME)技术,以及它们的优缺点,并展望了它们的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Analytical Chemistry
Reviews in Analytical Chemistry 化学-分析化学
CiteScore
7.50
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.
期刊最新文献
Detection of exosomes in various biological fluids utilizing specific epitopes and directed multiple antigenic peptide antibodies Progress of sensitive materials in chemiresistive sensors for detecting chemical warfare agent simulants: A review A brief review of the application of microextraction by packed sorbent for antibiotics analysis from biological, food, and environmental samples Major biochemical constituents of Withania somnifera (ashwagandha) extract: A review of chemical analysis A green HPLC method for the determination of apixaban in pharmaceutical products: Development and validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1