{"title":"Sex-specific evolution of a Drosophila sensory system via interacting cis- and trans-regulatory changes","authors":"David Luecke, Gavin Rice, Artyom Kopp","doi":"10.1111/ede.12398","DOIUrl":null,"url":null,"abstract":"<p>The evolution of gene expression via <i>cis</i>-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in <i>Drosophila</i>. <i>Drosophila prolongata</i> males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the <i>Pox neuro</i> transcription factor (<i>Poxn</i>), which specifies chemosensory bristle identity, shows expanded expression in <i>D. prolongata</i> males. <i>Poxn</i> expression is controlled by nonadditive interactions among widely dispersed enhancers. Although some <i>D. prolongata Poxn</i> enhancers show increased activity, the additive component of this increase is slight, suggesting that most changes in <i>Poxn</i> expression are due to epistatic interactions between <i>Poxn</i> enhancers and <i>trans</i>-regulatory factors. Indeed, the expansion of <i>D. prolongata Poxn</i> enhancer activity is only observed in cells that express <i>doublesex</i> (<i>dsx</i>), the gene that controls sexual differentiation in <i>Drosophila</i> and also shows increased expression in <i>D. prolongata</i> males due to <i>cis</i>-regulatory changes. Although expanded <i>dsx</i> expression may contribute to increased activity of <i>D. prolongata Poxn</i> enhancers, this interaction is not sufficient to explain the full expansion of <i>Poxn</i> expression, suggesting that <i>cis</i>–<i>trans</i> interactions between <i>Poxn, dsx</i>, and additional unknown genes are necessary to produce the derived <i>D. prolongata</i> phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"24 1-2","pages":"37-60"},"PeriodicalIF":2.6000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12398","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila. Drosophila prolongata males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the Pox neuro transcription factor (Poxn), which specifies chemosensory bristle identity, shows expanded expression in D. prolongata males. Poxn expression is controlled by nonadditive interactions among widely dispersed enhancers. Although some D. prolongata Poxn enhancers show increased activity, the additive component of this increase is slight, suggesting that most changes in Poxn expression are due to epistatic interactions between Poxn enhancers and trans-regulatory factors. Indeed, the expansion of D. prolongata Poxn enhancer activity is only observed in cells that express doublesex (dsx), the gene that controls sexual differentiation in Drosophila and also shows increased expression in D. prolongata males due to cis-regulatory changes. Although expanded dsx expression may contribute to increased activity of D. prolongata Poxn enhancers, this interaction is not sufficient to explain the full expansion of Poxn expression, suggesting that cis–trans interactions between Poxn, dsx, and additional unknown genes are necessary to produce the derived D. prolongata phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.
期刊介绍:
Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.