{"title":"H<sub>2</sub>-induced transient upregulation of phospholipids with suppression of energy metabolism.","authors":"Masumi Iketani, Iwao Sakane, Yasunori Fujita, Masafumi Ito, Ikuroh Ohsawa","doi":"10.4103/2045-9912.344973","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular hydrogen (H<sub>2</sub>) is an antioxidant and anti-inflammatory agent; however, the molecular mechanisms underlying its biological effects are largely unknown. Similar to other gaseous molecules such as inhalation anesthetics, H<sub>2</sub> is more soluble in lipids than in water. A recent study demonstrated that H<sub>2</sub> reduces radical polymerization-induced cellular damage by suppressing fatty acid peroxidation and membrane permeability. Thus, we sought to examine the effects of short exposure to H<sub>2</sub> on lipid composition and associated physiological changes in SH-SY5Y neuroblastoma cells. We analyzed cells by liquid chromatography-high-resolution mass spectrometry to define changes in lipid components. Lipid class analysis of cells exposed to H<sub>2</sub> for 1 hour revealed transient increases in glycerophospholipids including phosphatidylethanolamine, phosphatidylinositol, and cardiolipin. Metabolomic analysis also showed that H<sub>2</sub> exposure for 1 hour transiently suppressed overall energy metabolism accompanied by a decrease in glutathione. We further observed alterations to endosomal morphology by staining with specific antibodies. Endosomal transport of cholera toxin B to recycling endosomes localized around the Golgi body was delayed in H<sub>2</sub>-exposed cells. We speculate that H<sub>2</sub>-induced modification of lipid composition depresses energy production and endosomal transport concomitant with enhancement of oxidative stress, which transiently stimulates stress response pathways to protect cells.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e9/48/MGR-13-133.PMC9979205.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2045-9912.344973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Molecular hydrogen (H2) is an antioxidant and anti-inflammatory agent; however, the molecular mechanisms underlying its biological effects are largely unknown. Similar to other gaseous molecules such as inhalation anesthetics, H2 is more soluble in lipids than in water. A recent study demonstrated that H2 reduces radical polymerization-induced cellular damage by suppressing fatty acid peroxidation and membrane permeability. Thus, we sought to examine the effects of short exposure to H2 on lipid composition and associated physiological changes in SH-SY5Y neuroblastoma cells. We analyzed cells by liquid chromatography-high-resolution mass spectrometry to define changes in lipid components. Lipid class analysis of cells exposed to H2 for 1 hour revealed transient increases in glycerophospholipids including phosphatidylethanolamine, phosphatidylinositol, and cardiolipin. Metabolomic analysis also showed that H2 exposure for 1 hour transiently suppressed overall energy metabolism accompanied by a decrease in glutathione. We further observed alterations to endosomal morphology by staining with specific antibodies. Endosomal transport of cholera toxin B to recycling endosomes localized around the Golgi body was delayed in H2-exposed cells. We speculate that H2-induced modification of lipid composition depresses energy production and endosomal transport concomitant with enhancement of oxidative stress, which transiently stimulates stress response pathways to protect cells.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.