Multidimensional Filter Banks and Multiscale Geometric Representations

M. Do, Yue M. Lu
{"title":"Multidimensional Filter Banks and Multiscale Geometric Representations","authors":"M. Do, Yue M. Lu","doi":"10.1561/2000000012","DOIUrl":null,"url":null,"abstract":"Thanks to the explosive growth of sensing devices and capabilities, multidimensional (MD) signals — such as images, videos, multispectral images, light fields, and biomedical data volumes — have become ubiquitous. Multidimensional filter banks and the associated constructions provide a unified framework and an efficient computational tool in the formation, representation, and processing of these multidimensional data sets. In this survey we aim to provide a systematic development of the theory and constructions of multidimensional filter banks. We thoroughly review several tools that have been shown to be particularly effective in the design and analysis of multidimensional filter banks, including sampling lattices, multidimensional bases and frames, polyphase representations, Grobner bases, mapping methods, frequency domain constructions, ladder structures and lifting schemes. We then focus on the construction of filter banks and signal representations that can capture directional and geometric features, which are unique and key properties of many multidimensional signals. Next, Full text available at: http://dx.doi.org/10.1561/2000000012","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"4 1","pages":"157-264"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Thanks to the explosive growth of sensing devices and capabilities, multidimensional (MD) signals — such as images, videos, multispectral images, light fields, and biomedical data volumes — have become ubiquitous. Multidimensional filter banks and the associated constructions provide a unified framework and an efficient computational tool in the formation, representation, and processing of these multidimensional data sets. In this survey we aim to provide a systematic development of the theory and constructions of multidimensional filter banks. We thoroughly review several tools that have been shown to be particularly effective in the design and analysis of multidimensional filter banks, including sampling lattices, multidimensional bases and frames, polyphase representations, Grobner bases, mapping methods, frequency domain constructions, ladder structures and lifting schemes. We then focus on the construction of filter banks and signal representations that can capture directional and geometric features, which are unique and key properties of many multidimensional signals. Next, Full text available at: http://dx.doi.org/10.1561/2000000012
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维滤波器组和多尺度几何表示
由于传感设备和功能的爆炸式增长,多维(MD)信号——如图像、视频、多光谱图像、光场和生物医学数据量——已经无处不在。多维滤波器组和相关结构为这些多维数据集的形成、表示和处理提供了统一的框架和有效的计算工具。在这个调查中,我们的目的是提供一个系统的理论发展和多维滤波器组的结构。我们全面回顾了几种在多维滤波器组的设计和分析中特别有效的工具,包括采样格、多维基和框架、多相表示、Grobner基、映射方法、频域构造、阶梯结构和提升方案。然后,我们专注于滤波器组的构建和信号表示,可以捕获方向和几何特征,这是许多多维信号的独特和关键属性。接下来,全文可在:http://dx.doi.org/10.1561/2000000012
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Graph Signal Processing: High Dimensional Spaces, Models and Structures An Introduction to Quantum Machine Learning for Engineers Signal Decomposition Using Masked Proximal Operators Online Component Analysis, Architectures and Applications Wireless for Machine Learning: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1