Dynamic Modeling and Vector control of DFIG-based Wind Turbine

Ines Zgarni, L. El Amraoui
{"title":"Dynamic Modeling and Vector control of DFIG-based Wind Turbine","authors":"Ines Zgarni, L. El Amraoui","doi":"10.1109/IC_ASET53395.2022.9765917","DOIUrl":null,"url":null,"abstract":"This work deals with the development of vector control of Doubly Fed Induction Generator (DFIG) based Wind Turbine system. The dynamic modeling of studied system is described, firstly, according to stationary reference frame αβ and then according to synchronous reference frame dq. Moreover, the wind turbine modeling is evoked by resorting of Maximum Power Point Tracking (MPPT) approach based on indirect speed control. However, the control strategy focuses mainly on the implementation of Rotor-Side Converter (RSC) control employing rotor current control loops and speed and power control loops in order to regulate the electromagnetic torque and the reactive power exchanged between the stator and the grid. The studied system is tested and simulated for both super-synchronous and sub-synchronous wind speed using Sim Power System Simulink of MATLAB to prove the effectiveness of proposed vector control strategy.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"94 1","pages":"262-267"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET53395.2022.9765917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work deals with the development of vector control of Doubly Fed Induction Generator (DFIG) based Wind Turbine system. The dynamic modeling of studied system is described, firstly, according to stationary reference frame αβ and then according to synchronous reference frame dq. Moreover, the wind turbine modeling is evoked by resorting of Maximum Power Point Tracking (MPPT) approach based on indirect speed control. However, the control strategy focuses mainly on the implementation of Rotor-Side Converter (RSC) control employing rotor current control loops and speed and power control loops in order to regulate the electromagnetic torque and the reactive power exchanged between the stator and the grid. The studied system is tested and simulated for both super-synchronous and sub-synchronous wind speed using Sim Power System Simulink of MATLAB to prove the effectiveness of proposed vector control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于dfig的风力机动态建模与矢量控制
本文研究了基于双馈感应发电机(DFIG)的风力发电系统矢量控制的发展。首先根据静止参照系αβ,然后根据同步参照系dq对所研究的系统进行了动力学建模。采用基于间接速度控制的最大功率点跟踪(MPPT)方法对风力机进行建模。然而,控制策略主要侧重于实现转子侧变流器(RSC)控制,采用转子电流控制回路和速度和功率控制回路来调节电磁转矩和定子与电网之间交换的无功功率。利用MATLAB中的Sim Power system Simulink对所研究的系统进行了超同步和亚同步风速的测试和仿真,验证了所提出的矢量控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Glioma segmentation based on deep CNN Mechanical Design and Control of an Arm with Two Degrees of Freedom for Inspection and Cleaning Operations Adaptive-Cost Shortest Path Based Heuristic for Space Division Multiplexing Networks Wind Farm Based DFIG Supervision In Case Of Power Gradient Constraint Sun Sensor Design for Full Field of View Coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1