Recursive-Batch Estimation of Motion and Structure from Monocular Image Sequences

Cui N., Weng J.J., Cohen P.
{"title":"Recursive-Batch Estimation of Motion and Structure from Monocular Image Sequences","authors":"Cui N.,&nbsp;Weng J.J.,&nbsp;Cohen P.","doi":"10.1006/ciun.1994.1010","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the issue of optimal motion and structure estimation from monocular image sequences of a rigid scene. The new method has the following characteristics: (1) the dimension of the search space in the nonlinear optimization is drastically reduced by exploiting the relationship between structure and motion parameters; (2) the degree of reliability of the observations and estimates is effectively taken into account; (3) the proposed formulation allows arbitrary interframe motion; (4) the information about the structure of the scene, acquired from previous images, is systematically integrated into the new estimations; (5) the integration of multiple views using this method gives a large 2.5D visual map, much larger than that covered by any single view. It is shown also that the scale factor associated with any two consecutive images in a monocular sequence is determined by the scale factor of the first two images. Our simulation results and experiments with long image sequences of real world scenes indicate that the optimization method developed in this paper not only greatly reduces the computational complexity but also substantially improves the motion and structure estimates over those produced by the linear algorithms.</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1994.1010","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049966084710102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

This paper addresses the issue of optimal motion and structure estimation from monocular image sequences of a rigid scene. The new method has the following characteristics: (1) the dimension of the search space in the nonlinear optimization is drastically reduced by exploiting the relationship between structure and motion parameters; (2) the degree of reliability of the observations and estimates is effectively taken into account; (3) the proposed formulation allows arbitrary interframe motion; (4) the information about the structure of the scene, acquired from previous images, is systematically integrated into the new estimations; (5) the integration of multiple views using this method gives a large 2.5D visual map, much larger than that covered by any single view. It is shown also that the scale factor associated with any two consecutive images in a monocular sequence is determined by the scale factor of the first two images. Our simulation results and experiments with long image sequences of real world scenes indicate that the optimization method developed in this paper not only greatly reduces the computational complexity but also substantially improves the motion and structure estimates over those produced by the linear algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单眼图像序列中运动和结构的递归批估计
本文研究了刚性场景单目图像序列的最优运动和结构估计问题。该方法具有以下特点:(1)利用结构与运动参数之间的关系,大大降低了非线性优化中搜索空间的维数;(2)观测值和估计值的可靠程度得到有效考虑;(3)所提公式允许任意帧间运动;(4)将从先前图像中获取的场景结构信息系统地整合到新的估计中;(5)采用该方法将多个视图整合在一起,可以得到比任何单一视图所覆盖的大得多的大的2.5D视觉地图。还表明,与单眼序列中任意两幅连续图像相关的比例因子由前两幅图像的比例因子决定。我们的仿真结果和对真实世界场景的长图像序列的实验表明,本文提出的优化方法不仅大大降低了计算复杂度,而且大大提高了线性算法产生的运动和结构估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phase-Based Binocular Vergence Control and Depth Reconstruction Using Active Vision 3D Structure Reconstruction from Point Correspondences between two Perspective Projections Default Shape Theory: With Application to the Computation of the Direction of the Light Source Computational Cross Ratio for Computer Vision Refining 3D reconstruction: a theoretical and experimental study of the effect of cross-correlations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1