{"title":"Modeling of Surface Crack Advance in Round Wires Subjected to Cyclic Loading","authors":"J. Toribio, J. Matos, B. González, J. Escuadra","doi":"10.1520/JAI103996","DOIUrl":null,"url":null,"abstract":"This paper shows the evolution of the surface crack front in round bars constituted of different materials (determined by the exponent m of the Paris law), subjected to fatigue tension loading (with free ends) or fatigue bending loading. To this end, a numerical modeling was developed on the basis of a discretization of the crack front (characterized with elliptical shape) and the crack advance at each point perpendicular to such a front, according to a Paris-Erdogan law, using a three-parameter stress intensity factor (SIF). Each analyzed case was characterized by the evolution of the semielliptical crack front, studying the progress with the relative crack depth a/D of the following three key variables: (i) crack aspect ratio a/b (relation between the semiaxes of the ellipse which defines the crack front); (ii) maximum dimensionless SIF; and (iii) minimum dimensionless SIF.","PeriodicalId":15057,"journal":{"name":"Journal of Astm International","volume":"s3-21 1","pages":"103996"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astm International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/JAI103996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper shows the evolution of the surface crack front in round bars constituted of different materials (determined by the exponent m of the Paris law), subjected to fatigue tension loading (with free ends) or fatigue bending loading. To this end, a numerical modeling was developed on the basis of a discretization of the crack front (characterized with elliptical shape) and the crack advance at each point perpendicular to such a front, according to a Paris-Erdogan law, using a three-parameter stress intensity factor (SIF). Each analyzed case was characterized by the evolution of the semielliptical crack front, studying the progress with the relative crack depth a/D of the following three key variables: (i) crack aspect ratio a/b (relation between the semiaxes of the ellipse which defines the crack front); (ii) maximum dimensionless SIF; and (iii) minimum dimensionless SIF.