Exploring potential drivers of brain size variation in the electric fish Brachyhypopomus occidentalis

IF 1.6 3区 生物学 Q2 ZOOLOGY Zoology Pub Date : 2023-02-01 DOI:10.1016/j.zool.2022.126058
Marangaby Mahamat , Luis F. De León , Mery L. Martínez
{"title":"Exploring potential drivers of brain size variation in the electric fish Brachyhypopomus occidentalis","authors":"Marangaby Mahamat ,&nbsp;Luis F. De León ,&nbsp;Mery L. Martínez","doi":"10.1016/j.zool.2022.126058","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Characterizing the factors that shape variation in brain size in natural populations is crucial to understanding the evolution of brain size in animals. Here, we explore how relative brain size and brain </span>allometry<span> vary with drainage, predation risk<span> and sex in natural populations of the electric knifefish </span></span></span><span><em>Brachyhypopomus</em><em> occidentalis</em></span>. Fish were sampled from high and low predation risk sites within two independent river drainages in eastern and central Panamá. Overall, we observed low variation in brain-body size allometric slopes associated with drainage, predation risk and sex category. However, we observed significant differences in allometric intercepts between predation risk sites. We also found significant differences in relative brain mass associated with drainage, as well as significant differences in absolute brain mass associated with drainage, predation risk and sex category. Our results suggest potential constraints in brain-body allometry across populations of <em>B. occidentalis</em>. However, both drainage and predation risk may be playing a role in brain mass variation among populations<em>.</em> We suggest that variation in brain mass in electric fishes is affected by multiple extrinsic and intrinsic factors, including geography, environmental complexity, social interaction and developmental or functional constraints.</p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200622000599","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Characterizing the factors that shape variation in brain size in natural populations is crucial to understanding the evolution of brain size in animals. Here, we explore how relative brain size and brain allometry vary with drainage, predation risk and sex in natural populations of the electric knifefish Brachyhypopomus occidentalis. Fish were sampled from high and low predation risk sites within two independent river drainages in eastern and central Panamá. Overall, we observed low variation in brain-body size allometric slopes associated with drainage, predation risk and sex category. However, we observed significant differences in allometric intercepts between predation risk sites. We also found significant differences in relative brain mass associated with drainage, as well as significant differences in absolute brain mass associated with drainage, predation risk and sex category. Our results suggest potential constraints in brain-body allometry across populations of B. occidentalis. However, both drainage and predation risk may be playing a role in brain mass variation among populations. We suggest that variation in brain mass in electric fishes is affected by multiple extrinsic and intrinsic factors, including geography, environmental complexity, social interaction and developmental or functional constraints.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索西方短尾电鱼脑大小变化的潜在驱动因素
描述自然种群中形成脑大小变化的因素对于理解动物脑大小的进化至关重要。在这里,我们探讨了西方短刀鱼(Brachyhypopomus occidentalis)自然种群的相对脑大小和脑异速是如何随引流、捕食风险和性别而变化的。鱼类样本来自巴拿马东部和中部两个独立河流流域内的高和低捕食风险地点。总的来说,我们观察到脑-体大小异速斜率与排水、捕食风险和性别类别相关的变化很小。然而,我们观察到不同捕食风险位点间异速生长截距的显著差异。我们还发现,与引流相关的相对脑质量、与引流相关的绝对脑质量、被捕食风险和性别类别存在显著差异。我们的研究结果提示了西方白蝇种群间脑-体异速生长的潜在限制。然而,引流和被捕食的风险可能在人群中的脑质量变化中起作用。我们认为电鱼脑质量的变化受到多种外在和内在因素的影响,包括地理、环境复杂性、社会互动和发育或功能限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zoology
Zoology 生物-动物学
CiteScore
3.90
自引率
0.00%
发文量
37
审稿时长
70 days
期刊介绍: Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution. The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species. The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.
期刊最新文献
Can all snakes swim? A review of the evidence and testing species across phylogeny and morphological diversity Seasonal dimorphism as an expression of sexual dimorphism: Influence of gonad maturity on the body shape of a rocky intertidal polyplacophoran The hind limb of Octodontidae (Rodentia, Mammalia): Functional implications for substrate preferences Unusual body division and epithelium structure in unusual phoronid Phoronis embryolabi Kinematics of elongate harvestmen chelicerae: Comparative range of motion analyses in extant Ischyropsalis (Dyspnoi, Opiliones)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1