Morphometry of the lateral orbitofrontal cortex is associated with eating dispositions in early adolescence: findings from a large population-based study.
Peter A Hall, John Best, James Danckert, Elliott A Beaton, Jessica Lee
{"title":"Morphometry of the lateral orbitofrontal cortex is associated with eating dispositions in early adolescence: findings from a large population-based study.","authors":"Peter A Hall, John Best, James Danckert, Elliott A Beaton, Jessica Lee","doi":"10.1093/scan/nsab084","DOIUrl":null,"url":null,"abstract":"<p><p>Early adolescence is a critical period for eating behaviors as children gain autonomy around food choice and peer influences increase in potency. From a neurodevelopmental perspective, significant structural changes take place in the prefrontal cortex during this time, including the orbitofrontal cortex (OFC), which is involved in socially contextualized decision-making. We examined the morphological features of the OFC in relation to food choice in a sample of 10 309 early adolescent children from the Adolescent Brain and Cognitive Development Study. Structural parameters of the OFC and insula were examined for relationships with two important aspects of food choice: limiting the consumption of fast/fried food and maximizing the consumption of nutritious foods. Raw, partially adjusted and fully adjusted models were evaluated. Findings revealed that a larger surface area of the lateral OFC was associated with higher odds of limiting fast/fried food consumption in raw [odds ratio (OR) = 1.07, confidence interval (CI): 1.02, 1.12, P = 0.002, PFDR = 0.012], partially adjusted (OR = 1.11, CI: 1.03, 1.19, P = 0.004, PFDR = 0.024) and fully adjusted models (OR = 1.11, CI: 1.03, 1.19, P = 0.006, PFDR = 0.036). In contrast, a larger insula volume was associated with lower odds of maximizing healthy foods in raw (OR = 0.94, CI: 0.91, 0.97, P <0.001, PFDR = 0.003) and partially adjusted (OR = 0.93, CI: 0.88, 0.98, P = 0.008, PFDR = 0.048) models. These findings refine our understanding of the OFC as a network node implicated in socially mediated eating behaviors.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997071/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/scan/nsab084","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 4
Abstract
Early adolescence is a critical period for eating behaviors as children gain autonomy around food choice and peer influences increase in potency. From a neurodevelopmental perspective, significant structural changes take place in the prefrontal cortex during this time, including the orbitofrontal cortex (OFC), which is involved in socially contextualized decision-making. We examined the morphological features of the OFC in relation to food choice in a sample of 10 309 early adolescent children from the Adolescent Brain and Cognitive Development Study. Structural parameters of the OFC and insula were examined for relationships with two important aspects of food choice: limiting the consumption of fast/fried food and maximizing the consumption of nutritious foods. Raw, partially adjusted and fully adjusted models were evaluated. Findings revealed that a larger surface area of the lateral OFC was associated with higher odds of limiting fast/fried food consumption in raw [odds ratio (OR) = 1.07, confidence interval (CI): 1.02, 1.12, P = 0.002, PFDR = 0.012], partially adjusted (OR = 1.11, CI: 1.03, 1.19, P = 0.004, PFDR = 0.024) and fully adjusted models (OR = 1.11, CI: 1.03, 1.19, P = 0.006, PFDR = 0.036). In contrast, a larger insula volume was associated with lower odds of maximizing healthy foods in raw (OR = 0.94, CI: 0.91, 0.97, P <0.001, PFDR = 0.003) and partially adjusted (OR = 0.93, CI: 0.88, 0.98, P = 0.008, PFDR = 0.048) models. These findings refine our understanding of the OFC as a network node implicated in socially mediated eating behaviors.