Comparison of Axial Water and Air Injections in the Draft Tube of a Francis Turbine for RVR Mitigation

S. Khullar, K. Singh, M. Cervantes, B. Gandhi
{"title":"Comparison of Axial Water and Air Injections in the Draft Tube of a Francis Turbine for RVR Mitigation","authors":"S. Khullar, K. Singh, M. Cervantes, B. Gandhi","doi":"10.1115/fedsm2021-65503","DOIUrl":null,"url":null,"abstract":"\n The presence of excessive swirl at the runner outlet in Francis turbines operating at part load leads to the development of flow instabilities such as the rotating vortex rope (RVR). The presence of RVR causes severe pressure pulsations, power swings, and fatigue damage in the turbine unit. Air and water injection in the draft tube have been reported to reduce the detrimental effects of RVR formation in the Francis turbines. Air injection is one of the oldest and most widely used methods. In contrast, water jet injection is a relatively new methodology. The present work reports the numerical simulations performed to compare the respective effectiveness of these methods to mitigate the RVR and the related flow instabilities. The efficacy of the two methods has been compared based on the pressure pulsations and pressure recovery in the draft tube cone. The results show that the air and water injection influence the draft tube flow field in different ways. Both air and water injection led to a reduction in pressure pulsation magnitudes in the draft tube cone. However, the air injection led to a negative pressure recovery while the water injection improved the draft tube action.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The presence of excessive swirl at the runner outlet in Francis turbines operating at part load leads to the development of flow instabilities such as the rotating vortex rope (RVR). The presence of RVR causes severe pressure pulsations, power swings, and fatigue damage in the turbine unit. Air and water injection in the draft tube have been reported to reduce the detrimental effects of RVR formation in the Francis turbines. Air injection is one of the oldest and most widely used methods. In contrast, water jet injection is a relatively new methodology. The present work reports the numerical simulations performed to compare the respective effectiveness of these methods to mitigate the RVR and the related flow instabilities. The efficacy of the two methods has been compared based on the pressure pulsations and pressure recovery in the draft tube cone. The results show that the air and water injection influence the draft tube flow field in different ways. Both air and water injection led to a reduction in pressure pulsation magnitudes in the draft tube cone. However, the air injection led to a negative pressure recovery while the water injection improved the draft tube action.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混流式水轮机尾水管轴向水注入与空气注入减缓RVR的比较
在部分负荷工况下运行的混流式水轮机,由于流道出口处存在过大的涡流,导致了旋转涡绳等流动不稳定现象的发展。RVR的存在会导致汽轮机组出现严重的压力脉动、功率波动和疲劳损伤。据报道,在尾水管中注入空气和水可以减少混流式涡轮机中RVR形成的有害影响。空气喷射是最古老和最广泛使用的方法之一。相比之下,水射流是一种相对较新的方法。本工作报告了数值模拟,以比较这些方法各自减轻RVR和相关流动不稳定性的有效性。根据尾水管锥内压力脉动和压力恢复情况,比较了两种方法的效果。结果表明,空气注入和注水对尾水管流场的影响方式不同。空气和水的注入都降低了尾水管锥内的压力脉动幅度。然而,空气注入导致负压恢复,而注水改善了尾水管的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid Dynamics and Contact Stress on Hard Sealing Surface Analysis of LNG Cryogenic Ball Valve 0D Modeling of Fuel Tank for Vapor Generation Impact of Urban Microclimate on Air Conditioning Energy Consumption Using Different Convective Heat Transfer Coefficient Correlations Available in Building Energy Simulation Tools Study on Overall Design of a Vertical Take-Off and Landing Unmanned Aerial Vehicle Powered by Electric Ducted Fans Influence of the Topological Structures of the Nose of High-Speed Maglev Train on Aerodynamic Performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1