Knowledge graphs for enhancing transparency in health data ecosystems

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Semantic Web Pub Date : 2023-04-21 DOI:10.3233/sw-223294
F. Aisopos, S. Jozashoori, E. Niazmand, Disha Purohit, Ariam Rivas, Ahmad Sakor, Enrique Iglesias, D. Vogiatzis, Ernestina Menasalvas Ruiz, A. R. González, Guillermo Vigueras, Daniel Gómez-Bravo, M. Torrente, Roberto Hernández López, M. P. Pulla, Athanasios Dalianis, A. Triantafillou, G. Paliouras, M. Vidal
{"title":"Knowledge graphs for enhancing transparency in health data ecosystems","authors":"F. Aisopos, S. Jozashoori, E. Niazmand, Disha Purohit, Ariam Rivas, Ahmad Sakor, Enrique Iglesias, D. Vogiatzis, Ernestina Menasalvas Ruiz, A. R. González, Guillermo Vigueras, Daniel Gómez-Bravo, M. Torrente, Roberto Hernández López, M. P. Pulla, Athanasios Dalianis, A. Triantafillou, G. Paliouras, M. Vidal","doi":"10.3233/sw-223294","DOIUrl":null,"url":null,"abstract":"Tailoring personalized treatments demands the analysis of a patient’s characteristics, which may be scattered over a wide variety of sources. These features include family history, life habits, comorbidities, and potential treatment side effects. Moreover, the analysis of the services visited the most by a patient before a new diagnosis, as well as the type of requested tests, may uncover patterns that contribute to earlier disease detection and treatment effectiveness. Built on knowledge-driven ecosystems, we devise DE4LungCancer, a health data ecosystem of data sources for lung cancer. In this data ecosystem, knowledge extracted from heterogeneous sources, e.g., clinical records, scientific publications, and pharmacological data, is integrated into knowledge graphs. Ontologies describe the meaning of the combined data, and mapping rules enable the declarative definition of the transformation and integration processes. DE4LungCancer is assessed regarding the methods followed for data quality assessment and curation. Lastly, the role of controlled vocabularies and ontologies in health data management is discussed, as well as their impact on transparent knowledge extraction and analytics. This paper presents the lessons learned in the DE4LungCancer development. It demonstrates the transparency level supported by the proposed knowledge-driven ecosystem, in the context of the lung cancer pilots of the EU H2020-funded project BigMedilytic, the ERA PerMed funded project P4-LUCAT, and the EU H2020 projects CLARIFY and iASiS.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"41 1","pages":"943-976"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-223294","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

Tailoring personalized treatments demands the analysis of a patient’s characteristics, which may be scattered over a wide variety of sources. These features include family history, life habits, comorbidities, and potential treatment side effects. Moreover, the analysis of the services visited the most by a patient before a new diagnosis, as well as the type of requested tests, may uncover patterns that contribute to earlier disease detection and treatment effectiveness. Built on knowledge-driven ecosystems, we devise DE4LungCancer, a health data ecosystem of data sources for lung cancer. In this data ecosystem, knowledge extracted from heterogeneous sources, e.g., clinical records, scientific publications, and pharmacological data, is integrated into knowledge graphs. Ontologies describe the meaning of the combined data, and mapping rules enable the declarative definition of the transformation and integration processes. DE4LungCancer is assessed regarding the methods followed for data quality assessment and curation. Lastly, the role of controlled vocabularies and ontologies in health data management is discussed, as well as their impact on transparent knowledge extraction and analytics. This paper presents the lessons learned in the DE4LungCancer development. It demonstrates the transparency level supported by the proposed knowledge-driven ecosystem, in the context of the lung cancer pilots of the EU H2020-funded project BigMedilytic, the ERA PerMed funded project P4-LUCAT, and the EU H2020 projects CLARIFY and iASiS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于提高卫生数据生态系统透明度的知识图谱
定制个性化治疗需要分析患者的特征,这些特征可能分散在各种各样的来源上。这些特征包括家族史、生活习惯、合并症和潜在的治疗副作用。此外,对病人在作出新的诊断之前访问次数最多的服务以及所要求的检查类型进行分析,可能会发现有助于早期发现疾病和提高治疗效果的模式。基于知识驱动的生态系统,我们设计了DE4LungCancer,一个肺癌数据源的健康数据生态系统。在这个数据生态系统中,从异质来源提取的知识,如临床记录、科学出版物和药理学数据,被整合到知识图谱中。本体描述组合数据的含义,映射规则支持转换和集成过程的声明性定义。对DE4LungCancer进行数据质量评估和整理的方法评估。最后,讨论了受控词汇表和本体在健康数据管理中的作用,以及它们对透明知识提取和分析的影响。本文介绍了DE4LungCancer发展过程中的经验教训。在欧盟H2020资助项目BigMedilytic、ERA PerMed资助项目P4-LUCAT以及欧盟H2020项目clarity和iASiS的肺癌试点项目背景下,它展示了拟议的知识驱动生态系统所支持的透明度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Semantic Web
Semantic Web COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍: The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.
期刊最新文献
Wikidata subsetting: Approaches, tools, and evaluation An ontology of 3D environment where a simulated manipulation task takes place (ENVON) Sem@ K: Is my knowledge graph embedding model semantic-aware? Using semantic story maps to describe a territory beyond its map NeuSyRE: Neuro-symbolic visual understanding and reasoning framework based on scene graph enrichment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1