Biopolymers as a versatile tool with special emphasis on environmental application

Q2 Physics and Astronomy Physical Sciences Reviews Pub Date : 2023-04-03 DOI:10.1515/psr-2022-0218
S. Palanisamy
{"title":"Biopolymers as a versatile tool with special emphasis on environmental application","authors":"S. Palanisamy","doi":"10.1515/psr-2022-0218","DOIUrl":null,"url":null,"abstract":"Abstract Water sources are becoming highly unsuited as potable sources due to the presence of impurities and hazardous chemicals. Although there are many conventional methods available, the development of innovative technologies is essential for the treating and recycling of wastewater. Owing to their unique and excellent qualities, polymers have recently seen extensive use across various industries. By joining the monomeric components covalently, biopolymers resemble a more natural alternative to synthetic polymers. The biopolymer and biopolymer composites integrate into many sections of the treatment process easily, making them effective, affordable, and environmentally beneficial. Due to their distinct features, biopolymers can replace traditional adsorbents. The biopolymers and composites discussed in this chapter are ideal adsorbent materials for eliminating contaminants from the environment. Based on their sources, methods of preparation, and uses, biopolymers, and their composites are categorized. This chapter also includes different research perspectives on biopolymers, especially from an ecological and financial standpoint.","PeriodicalId":20156,"journal":{"name":"Physical Sciences Reviews","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Sciences Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/psr-2022-0218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Water sources are becoming highly unsuited as potable sources due to the presence of impurities and hazardous chemicals. Although there are many conventional methods available, the development of innovative technologies is essential for the treating and recycling of wastewater. Owing to their unique and excellent qualities, polymers have recently seen extensive use across various industries. By joining the monomeric components covalently, biopolymers resemble a more natural alternative to synthetic polymers. The biopolymer and biopolymer composites integrate into many sections of the treatment process easily, making them effective, affordable, and environmentally beneficial. Due to their distinct features, biopolymers can replace traditional adsorbents. The biopolymers and composites discussed in this chapter are ideal adsorbent materials for eliminating contaminants from the environment. Based on their sources, methods of preparation, and uses, biopolymers, and their composites are categorized. This chapter also includes different research perspectives on biopolymers, especially from an ecological and financial standpoint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物聚合物作为一种多用途的工具,特别强调环境应用
由于存在杂质和有害化学物质,水源变得非常不适合作为饮用水源。虽然有许多传统方法可用,但创新技术的发展对于废水的处理和再循环至关重要。由于其独特而优异的品质,聚合物最近在各个行业中得到了广泛的应用。通过共价连接单体组分,生物聚合物类似于合成聚合物的更天然的替代品。生物聚合物和生物聚合物复合材料很容易集成到处理过程的许多部分,使它们有效,经济实惠,对环境有益。由于其独特的特性,生物聚合物可以取代传统的吸附剂。本章讨论的生物聚合物和复合材料是去除环境污染物的理想吸附材料。根据其来源、制备方法和用途,对生物聚合物及其复合材料进行了分类。本章还包括生物聚合物的不同研究视角,特别是从生态和金融的角度来看。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Sciences Reviews
Physical Sciences Reviews MULTIDISCIPLINARY SCIENCES-
CiteScore
2.40
自引率
0.00%
发文量
173
期刊最新文献
Preparing new secondary science teachers in the context of sustainable development goals: green and sustainable chemistry A facile and efficient one-pot 3-component reaction (3-CR) method for the synthesis of thiazine-based heterocyclic compounds using zwitterion adduct intermediates The workshops on computational applications in secondary metabolite discovery (CAiSMD) Activated carbon-mediated adsorption of emerging contaminants Carbon metal nanoparticle composites for the removal of pollutants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1