{"title":"A central limit theorem for additive functionals of increasing trees","authors":"D. Ralaivaosaona, S. Wagner","doi":"10.1017/S0963548318000585","DOIUrl":null,"url":null,"abstract":"Abstract A tree functional is called additive if it satisfies a recursion of the form $F(T) = \\sum_{j=1}^k F(B_j) + f(T)$, where B1, …, Bk are the branches of the tree T and f (T) is a toll function. We prove a general central limit theorem for additive functionals of d-ary increasing trees under suitable assumptions on the toll function. The same method also applies to generalized plane-oriented increasing trees (GPORTs). One of our main applications is a log-normal law that we prove for the size of the automorphism group of d-ary increasing trees, but other examples (old and new) are covered as well.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548318000585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract A tree functional is called additive if it satisfies a recursion of the form $F(T) = \sum_{j=1}^k F(B_j) + f(T)$, where B1, …, Bk are the branches of the tree T and f (T) is a toll function. We prove a general central limit theorem for additive functionals of d-ary increasing trees under suitable assumptions on the toll function. The same method also applies to generalized plane-oriented increasing trees (GPORTs). One of our main applications is a log-normal law that we prove for the size of the automorphism group of d-ary increasing trees, but other examples (old and new) are covered as well.