UniCache: Efficient Log Replication through Learning Workload Patterns

Harald Ng, Kun Wu, Paris Carbone
{"title":"UniCache: Efficient Log Replication through Learning Workload Patterns","authors":"Harald Ng, Kun Wu, Paris Carbone","doi":"10.48786/edbt.2023.39","DOIUrl":null,"url":null,"abstract":"Most of the world’s cloud data service workloads are currently being backed by replicated state machines. Production-grade log replication protocols used for the job impose heavy data transfer duties on the primary server which need to disseminate the log commands to all the replica servers. UniCache proposes a principal solution to this problem using a learned replicated cache which enables commands to be sent over the network as compressed encodings. UniCache takes advantage of that each replica has access to a consistent prefix of the replicated log which allows them to build a uniform lookup cache used for compressing and decompressing commands consistently. UniCache achieves effective speedups, lowering the primary load in application workloads with a skewed data distribution. Our experimental studies showcase a low pre-processing overhead and the highest performance gains in cross-data center deployments over wide area networks.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"30 3 1","pages":"471-477"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of the world’s cloud data service workloads are currently being backed by replicated state machines. Production-grade log replication protocols used for the job impose heavy data transfer duties on the primary server which need to disseminate the log commands to all the replica servers. UniCache proposes a principal solution to this problem using a learned replicated cache which enables commands to be sent over the network as compressed encodings. UniCache takes advantage of that each replica has access to a consistent prefix of the replicated log which allows them to build a uniform lookup cache used for compressing and decompressing commands consistently. UniCache achieves effective speedups, lowering the primary load in application workloads with a skewed data distribution. Our experimental studies showcase a low pre-processing overhead and the highest performance gains in cross-data center deployments over wide area networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UniCache:通过学习工作负载模式实现高效日志复制
世界上大多数云数据服务工作负载目前都由复制状态机提供支持。用于作业的生产级日志复制协议在主服务器上施加了繁重的数据传输任务,主服务器需要将日志命令传播到所有副本服务器。UniCache提出了一个主要的解决方案来解决这个问题,它使用学习复制缓存,使命令能够以压缩编码的形式在网络上发送。UniCache利用了每个副本都可以访问复制日志的一致前缀的优势,这使得它们可以构建统一的查找缓存,用于一致地压缩和解压缩命令。UniCache实现了有效的加速,降低了具有倾斜数据分布的应用程序工作负载的主负载。我们的实验研究表明,在广域网跨数据中心部署中,预处理开销较低,性能收益最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1