Smart Wearable and Collaborative Technologies for the Operator 4.0 in the Present and Post-COVID Digital Manufacturing Worlds

IF 0.8 Q4 ENGINEERING, MANUFACTURING Smart and Sustainable Manufacturing Systems Pub Date : 2021-07-07 DOI:10.1520/ssms20200084
David Romero, Thorsten Wuest, Makenzie Keepers, L. Cavuoto, F. Megahed
{"title":"Smart Wearable and Collaborative Technologies for the Operator 4.0 in the Present and Post-COVID Digital Manufacturing Worlds","authors":"David Romero, Thorsten Wuest, Makenzie Keepers, L. Cavuoto, F. Megahed","doi":"10.1520/ssms20200084","DOIUrl":null,"url":null,"abstract":"This paper addresses the potential of smart wearable and collaborative technologies in support of healthier, safer, and more productive shop floor environments during the present and post- coronavirus 2019 pandemic emerging digital manufacturing worlds. It highlights the urgent need to \"digitally transform\" many high-touch shop floor operations into low-touch or no-touch ones, aiming not only at a safer but also more productive return to work as well as a healthier continuity of production operations in more socially sustainable working environments. Furthermore, it discusses the interrelated roles of people, data, and technology to develop smart and sustainable shop floor environments. Lastly, it provides relevant recommendations to the key business units in a manufacturing enterprise in regard to the adoption and leverage of smart, wearable, and collaborative technologies on the shop floor in order to ensure the short- and long-term operation of a factory amid the coronavirus 2019 pandemic and the future of production and work in the Industry 4.0 era.","PeriodicalId":51957,"journal":{"name":"Smart and Sustainable Manufacturing Systems","volume":"19 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/ssms20200084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 8

Abstract

This paper addresses the potential of smart wearable and collaborative technologies in support of healthier, safer, and more productive shop floor environments during the present and post- coronavirus 2019 pandemic emerging digital manufacturing worlds. It highlights the urgent need to "digitally transform" many high-touch shop floor operations into low-touch or no-touch ones, aiming not only at a safer but also more productive return to work as well as a healthier continuity of production operations in more socially sustainable working environments. Furthermore, it discusses the interrelated roles of people, data, and technology to develop smart and sustainable shop floor environments. Lastly, it provides relevant recommendations to the key business units in a manufacturing enterprise in regard to the adoption and leverage of smart, wearable, and collaborative technologies on the shop floor in order to ensure the short- and long-term operation of a factory amid the coronavirus 2019 pandemic and the future of production and work in the Industry 4.0 era.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在当前和后covid数字制造世界中,运营商4.0的智能可穿戴和协作技术
本文探讨了智能可穿戴和协作技术在当前和2019冠状病毒大流行后支持更健康、更安全、更高效的车间环境的潜力。它强调了迫切需要将许多高接触车间操作“数字化转型”为低接触或无接触的车间操作,目的不仅是为了更安全,更高效地重返工作岗位,以及在更具社会可持续性的工作环境中更健康地持续生产操作。此外,它还讨论了人、数据和技术在开发智能和可持续的车间环境中的相互关联的作用。最后,针对制造企业的关键业务部门在车间采用和利用智能、可穿戴和协同技术,为工厂在2019冠状病毒大流行和工业4.0时代的未来生产和工作中确保工厂的短期和长期运营提供相关建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart and Sustainable Manufacturing Systems
Smart and Sustainable Manufacturing Systems ENGINEERING, MANUFACTURING-
CiteScore
2.50
自引率
0.00%
发文量
17
期刊最新文献
Study on the deformation capacity of multi-material 4D-printed LCE actuators Effect of laser energy density on transformation behavior and mechanical property of NiTi alloys fabricated by laser powder bed fusion Smart Manufacturing Implementation of a Continuous Downstream Precipitation and Filtration Process for Antibody Purification Fabrication of thin-walled hat-shaped beams from ultrahigh strength steel by laser-assisted robotic roller forming Tailoring the microstructure, martensitic transformation temperature and mechanical properties of 4D printed NiTi alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1