{"title":"Crystalline anisotropic topological superconductivity in planar Josephson junctions","authors":"Joseph D. Pakizer, B. Scharf, A. Matos-Abiague","doi":"10.1103/PHYSREVRESEARCH.3.013198","DOIUrl":null,"url":null,"abstract":"We theoretically investigate the crystalline anisotropy of topological phase transitions in phase-controlled planar Josephson junctions (JJs) subject to spin-orbit coupling and in-plane magnetic fields. It is shown how topological superconductivity (TS) is affected by the interplay between the magnetic field and the orientation of the junction with respect to its crystallographic axes. This interplay can be used to electrically tune between BDI and D symmetry classes in a controlled fashion and thereby optimize the stability and localization of Majorana bound states in planar Josephson junctions. Our findings can be used as a guide for achieving the most favorable conditions when engineering TS in planar JJs and can be particularly relevant for setups containing non-collinear junctions which have been proposed for performing braiding operations on multiple Majorana pairs.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We theoretically investigate the crystalline anisotropy of topological phase transitions in phase-controlled planar Josephson junctions (JJs) subject to spin-orbit coupling and in-plane magnetic fields. It is shown how topological superconductivity (TS) is affected by the interplay between the magnetic field and the orientation of the junction with respect to its crystallographic axes. This interplay can be used to electrically tune between BDI and D symmetry classes in a controlled fashion and thereby optimize the stability and localization of Majorana bound states in planar Josephson junctions. Our findings can be used as a guide for achieving the most favorable conditions when engineering TS in planar JJs and can be particularly relevant for setups containing non-collinear junctions which have been proposed for performing braiding operations on multiple Majorana pairs.