Can MP(P)4 Compounds Form Complexes with C60

A. Kuznetsov
{"title":"Can MP(P)4 Compounds Form Complexes with C60","authors":"A. Kuznetsov","doi":"10.6000/1929-5030.2017.06.03.1","DOIUrl":null,"url":null,"abstract":"Numerous complexes between versatile derivatives of metalloporphyrins MP (with M being Mn, Co, Ni, Cu, Zn and Fe) and C 60 have been synthesized and characterized recently. Favorable van der Waals attractions between the curved p-surface of the fullerene and the planar p-surface of MP assist in the supramolecular recognition, overcoming the necessity of matching a concave-shaped host with a convex-shaped guest structure. Recently, we reported the computational studies of the structures and electronic properties of the series of metalloporphyrins where all the four pyrrole nitrogen atoms are replaced with P-atoms, MP(P) 4 , M = Sc-Zn. Motivated by the numerous examples of the complex formation between regular planar or quasi-planar MP and C 60 , we computationally investigated possibility of the complex formation between two MP(P) 4 species, ZnP(P) 4 and NiP(P) 4 , and C 60 without any linkers, using the CAM-B3LYP/6-31G* approach, both in the gas phase and with implicit effects from C 6 H 6 . We found that the binding energies in the MP(P) 4 -C 60 complexes for these two MP(P) 4 compounds are relatively low, ca. 1-1.6 kcal/mol and ca. 5 kcal/mol for M = Zn and Ni, respectively. The ZnP(P) 4 species was found to be noticeably distorted in the ZnP(P) 4 -C 60 complex whereas NiP(P) 4 inside the NiP(P) 4 -C 60 complex essentially retained its bowl-like shape. Thus, we showed the possibility of the formation of complexes between MP(P) 4 species and C 60 without any linkers and showed dependence of the complex stability on the transition metal M. Further investigations are in progress.","PeriodicalId":15165,"journal":{"name":"Journal of Applied Solution Chemistry and Modeling","volume":"51 1","pages":"91-97"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Solution Chemistry and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1929-5030.2017.06.03.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Numerous complexes between versatile derivatives of metalloporphyrins MP (with M being Mn, Co, Ni, Cu, Zn and Fe) and C 60 have been synthesized and characterized recently. Favorable van der Waals attractions between the curved p-surface of the fullerene and the planar p-surface of MP assist in the supramolecular recognition, overcoming the necessity of matching a concave-shaped host with a convex-shaped guest structure. Recently, we reported the computational studies of the structures and electronic properties of the series of metalloporphyrins where all the four pyrrole nitrogen atoms are replaced with P-atoms, MP(P) 4 , M = Sc-Zn. Motivated by the numerous examples of the complex formation between regular planar or quasi-planar MP and C 60 , we computationally investigated possibility of the complex formation between two MP(P) 4 species, ZnP(P) 4 and NiP(P) 4 , and C 60 without any linkers, using the CAM-B3LYP/6-31G* approach, both in the gas phase and with implicit effects from C 6 H 6 . We found that the binding energies in the MP(P) 4 -C 60 complexes for these two MP(P) 4 compounds are relatively low, ca. 1-1.6 kcal/mol and ca. 5 kcal/mol for M = Zn and Ni, respectively. The ZnP(P) 4 species was found to be noticeably distorted in the ZnP(P) 4 -C 60 complex whereas NiP(P) 4 inside the NiP(P) 4 -C 60 complex essentially retained its bowl-like shape. Thus, we showed the possibility of the formation of complexes between MP(P) 4 species and C 60 without any linkers and showed dependence of the complex stability on the transition metal M. Further investigations are in progress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MP(P)4化合物能与C60形成配合物吗
金属卟啉多用途衍生物MP (M为Mn、Co、Ni、Cu、Zn和Fe)与c60之间的配合物近年来被合成和表征。富勒烯的曲面p面和MP的平面p面之间有利的范德华吸引有助于超分子识别,克服了将凹形主体与凸形客体结构相匹配的需要。最近,我们报道了一系列金属卟啉的结构和电子性质的计算研究,其中四个吡咯氮原子全部被P原子取代,MP(P) 4, M = Sc-Zn。基于规则平面或准平面MP与c60之间形成络合物的大量例子,我们使用CAM-B3LYP/6- 31g *方法计算了两种MP(P) 4 (ZnP(P) 4和NiP(P) 4)与c60在没有任何连接物的情况下在气相和c6h6的隐含影响下形成络合物的可能性。我们发现这两种MP(P) 4化合物在MP(P) 4 -C 60配合物中的结合能相对较低,M = Zn和Ni的结合能分别为1-1.6 kcal/mol和5 kcal/mol。发现ZnP(P) 4在ZnP(P) 4 -C 60复合体中明显扭曲,而NiP(P) 4 -C 60复合体中的NiP(P) 4基本保持碗状形状。因此,我们证明了在没有任何连接的情况下MP(P) 4与c60之间形成配合物的可能性,并表明配合物的稳定性依赖于过渡金属m。进一步的研究正在进行中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uranyl - PyridylAzo Resorcinol System: Uncertainty Budget Evaluation and Interference Elimination Мultifunctional Inhibitors of "INCORGAZ" and "AMDOR" Series against Hydrosulfide and Carbon Dioxide Corrosion of Steel Environmental and Medical Aspects of the Glauconite Application Electrocatalytic Properties of Fe-Cu Composites Prepared on the Basis of the Reduced Copper (II) Ferrite Relationship of Physico-Chemical and Protective Properties of Vegetable Oils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1