{"title":"Long-term production scheduling optimization and 3D material mixing analysis for block caving mines","authors":"F. Khodayari, Y. Pourrahimian","doi":"10.1080/25726668.2018.1563742","DOIUrl":null,"url":null,"abstract":"ABSTRACT Although some scheduling optimization models can be found in the literature, few of them include material flow and the resulting dilution. In this paper, a 3D mixing methodology is proposed to be incorporated into the production schedule model. To capture horizontal and vertical mixing, different scenarios are generated based on the particles that fall into a 3D cone of movement, CoM. The proposed model is a block caving scheduling optimizer, BCSO, which includes mixing in the optimization. The BCSO was tested on a real-case block caving mine with 424 drawpoints; also, a number of production schedules were generated for the same mine using PCBC GEOVIA software. Resulting production schedules show that the BCSO can improve the NPV of the project by 2% to 4% compared to the best case generated by PCBC.","PeriodicalId":44166,"journal":{"name":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","volume":"1 1","pages":"65 - 76"},"PeriodicalIF":1.8000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Technology-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726668.2018.1563742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT Although some scheduling optimization models can be found in the literature, few of them include material flow and the resulting dilution. In this paper, a 3D mixing methodology is proposed to be incorporated into the production schedule model. To capture horizontal and vertical mixing, different scenarios are generated based on the particles that fall into a 3D cone of movement, CoM. The proposed model is a block caving scheduling optimizer, BCSO, which includes mixing in the optimization. The BCSO was tested on a real-case block caving mine with 424 drawpoints; also, a number of production schedules were generated for the same mine using PCBC GEOVIA software. Resulting production schedules show that the BCSO can improve the NPV of the project by 2% to 4% compared to the best case generated by PCBC.