K. C. Hernandes, É. A. Souza-Silva, C. F. Assumpção, C. Zini, J. Welke
{"title":"Carbonyl compounds and furan derivatives with toxic potential evaluated in the brewing stages of craft beer","authors":"K. C. Hernandes, É. A. Souza-Silva, C. F. Assumpção, C. Zini, J. Welke","doi":"10.1080/19440049.2019.1675911","DOIUrl":null,"url":null,"abstract":"ABSTRACT Carbonyl compounds and furan derivatives may form adducts with DNA and cause oxidative stress to human cells, which establishes the carcinogenic potential of these compounds. The occurrence of these compounds may vary according to the processing characteristics of the beer. The objective of this study was, for the first time, to investigate the free forms of target carbonyl compounds [acetaldehyde, acrolein, ethyl carbamate (EC) and formaldehyde] and furan derivatives [furfural and furfuryl alcohol (FA)] during the brewing stages of ale and lager craft beers. Samples were evaluated using headspace-solid phase microextraction and gas chromatography with mass spectrometric detection in selected ion monitoring mode (HS-SPME-GC/MS-SIM). Acetaldehyde, acrolein, formaldehyde and furfuryl alcohol were found in all brewing stages of both beer types, while EC and furfural concentrations were below the LOD and LOQ of the method (0.1 and 0.01 µg L−1, respectively). Boiling and fermentation of ale brewing seem to be important steps for the formation of acrolein and acetaldehyde, respectively, while boiling resulted in an increase of FA in both types of beer. Conversely, pasteurisation and maturation reduced the levels of these compounds in both types of beer. An increase in concentration of acrolein has not been verified in lager brew probably due to the difference in boiling time between these two types of beer (60 and 90 min for ale and lager, respectively). Graphical Abstract","PeriodicalId":12121,"journal":{"name":"Food Additives & Contaminants: Part A","volume":"1 1","pages":"61 - 68"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Additives & Contaminants: Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19440049.2019.1675911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
ABSTRACT Carbonyl compounds and furan derivatives may form adducts with DNA and cause oxidative stress to human cells, which establishes the carcinogenic potential of these compounds. The occurrence of these compounds may vary according to the processing characteristics of the beer. The objective of this study was, for the first time, to investigate the free forms of target carbonyl compounds [acetaldehyde, acrolein, ethyl carbamate (EC) and formaldehyde] and furan derivatives [furfural and furfuryl alcohol (FA)] during the brewing stages of ale and lager craft beers. Samples were evaluated using headspace-solid phase microextraction and gas chromatography with mass spectrometric detection in selected ion monitoring mode (HS-SPME-GC/MS-SIM). Acetaldehyde, acrolein, formaldehyde and furfuryl alcohol were found in all brewing stages of both beer types, while EC and furfural concentrations were below the LOD and LOQ of the method (0.1 and 0.01 µg L−1, respectively). Boiling and fermentation of ale brewing seem to be important steps for the formation of acrolein and acetaldehyde, respectively, while boiling resulted in an increase of FA in both types of beer. Conversely, pasteurisation and maturation reduced the levels of these compounds in both types of beer. An increase in concentration of acrolein has not been verified in lager brew probably due to the difference in boiling time between these two types of beer (60 and 90 min for ale and lager, respectively). Graphical Abstract