Green acidic catalyst from cellulose extracted from sugarcane bagasse through pretreatment by electron beam irradiation and subsequent sulfonation for sugar production

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2022-12-26 DOI:10.55713/jmmm.v32i4.1540
T. Rattanawongwiboon, Prim Chanklinhorm, Threeraphat Chutimasakul, T. Kwamman, Wilasinee Kingkam, Rattapon Khamlue, S. Ummartyotin
{"title":"Green acidic catalyst from cellulose extracted from sugarcane bagasse through pretreatment by electron beam irradiation and subsequent sulfonation for sugar production","authors":"T. Rattanawongwiboon, Prim Chanklinhorm, Threeraphat Chutimasakul, T. Kwamman, Wilasinee Kingkam, Rattapon Khamlue, S. Ummartyotin","doi":"10.55713/jmmm.v32i4.1540","DOIUrl":null,"url":null,"abstract":"The objective of this research is to prepare a green acidic catalyst from cellulose derived from sugarcane bagasse (SB). Initially, SB was pretreated by electron beam irradiation with a dose of 50 kGy to 200 kGy and subsequent acid hydrolysis to obtain cellulose. The cellulose derived from SB was carbonized at different temperatures for 4 h and then sulfonated with heating at 120°C under reflux. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to confirm the successful preparation of acidic catalyst by irradiation pretreatment and subsequent sulfonation. The cellulose derived from irradiated SB at the lowest dose of 50 kGy was used as a representative irradiated sample for comparison with non-irradiation. Scanning electron microscope image of sulfonated biochar was observed pores with various sizes. The existence of sulfur atom onto sulfonated biochar surface was investigated by Energy dispersive X-ray spectroscopy. After sugar production by sulfonated biochar as an acidic catalyst, the total sugar content was measured by a phenol-sulfuric acid method using a UV-Vis spectrophotometer. The total sugar with 94.51 ± 1.35% content was found when the acidic catalyst was performed. It was remarkable to note that sulfonated biochar prepared from cellulose derived from SB after pretreatment and sulfonation exhibited outstanding result for being as an acidic catalyst for sugar production.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"52 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v32i4.1540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this research is to prepare a green acidic catalyst from cellulose derived from sugarcane bagasse (SB). Initially, SB was pretreated by electron beam irradiation with a dose of 50 kGy to 200 kGy and subsequent acid hydrolysis to obtain cellulose. The cellulose derived from SB was carbonized at different temperatures for 4 h and then sulfonated with heating at 120°C under reflux. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to confirm the successful preparation of acidic catalyst by irradiation pretreatment and subsequent sulfonation. The cellulose derived from irradiated SB at the lowest dose of 50 kGy was used as a representative irradiated sample for comparison with non-irradiation. Scanning electron microscope image of sulfonated biochar was observed pores with various sizes. The existence of sulfur atom onto sulfonated biochar surface was investigated by Energy dispersive X-ray spectroscopy. After sugar production by sulfonated biochar as an acidic catalyst, the total sugar content was measured by a phenol-sulfuric acid method using a UV-Vis spectrophotometer. The total sugar with 94.51 ± 1.35% content was found when the acidic catalyst was performed. It was remarkable to note that sulfonated biochar prepared from cellulose derived from SB after pretreatment and sulfonation exhibited outstanding result for being as an acidic catalyst for sugar production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从甘蔗渣中提取纤维素,经电子束辐照预处理后磺化制备制糖用绿色酸性催化剂
本研究以甘蔗渣纤维素为原料制备绿色酸性催化剂。最初,SB采用50 ~ 200 kGy剂量的电子束辐照预处理,然后进行酸水解得到纤维素。将SB提取的纤维素在不同温度下碳化4 h,然后在回流下120℃加热磺化。利用傅里叶变换红外光谱(FTIR)和x射线衍射(XRD)证实了通过辐照预处理和后续磺化制备酸性催化剂的成功。以最低剂量50 kGy辐照SB所得纤维素作为代表性辐照样品,与未辐照样品进行比较。扫描电镜观察到磺化生物炭具有不同大小的孔隙。采用能量色散x射线能谱法研究了磺化生物炭表面硫原子的存在性。以磺化生物炭为酸性催化剂制糖后,采用紫外-可见分光光度计,用苯酚-硫酸法测定总糖含量。在酸性催化剂作用下,总糖含量为94.51±1.35%。值得注意的是,以SB为原料的纤维素经预处理和磺化制备的磺化生物炭在作为酸性催化剂产糖方面表现出了显著的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1