Learning-Based Calibration Decision System for Bio-Inertial Motion Application

Sina Askari, Chi-Shih Jao, Yusheng Wang, A. Shkel
{"title":"Learning-Based Calibration Decision System for Bio-Inertial Motion Application","authors":"Sina Askari, Chi-Shih Jao, Yusheng Wang, A. Shkel","doi":"10.1109/SENSORS43011.2019.8956789","DOIUrl":null,"url":null,"abstract":"We developed a learning-based calibration algorithm for a vestibular prosthesis with the long-term goal of reproducing error-free vestibular system dynamic responses. Our approach uses an additional IMU to detect the head acceleration of a patient and to correct the corresponding drift in the vestibular prosthesis. The algorithm includes four major parts. First, we extract features from the shoe-mounted IMU to classify human activities through convolutional neural networks. Second, we fuse data from the head-mounted IMU (vestibular prosthesis). Third, we artificially create additional data samples from a small pool of training data for each classification class. Fourth, we use the classified activities to calibrate the reading from the head-mounted IMU. The results indicate that during daily routine activities the firing rate baseline of a vestibular prosthesis system without calibration fluctuates between 100 pulses/s to 150 pulses/s; in contrast, an appropriate calibration to human activity results in correction of 4 pulses/s in extreme cases, providing a stable baseline firing rate while the head is not moving. In this work, we specifically study the contribution of gyroscope scale factor on the drift of the vestibular prosthesis system and propose a corresponding calibration method.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"54 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We developed a learning-based calibration algorithm for a vestibular prosthesis with the long-term goal of reproducing error-free vestibular system dynamic responses. Our approach uses an additional IMU to detect the head acceleration of a patient and to correct the corresponding drift in the vestibular prosthesis. The algorithm includes four major parts. First, we extract features from the shoe-mounted IMU to classify human activities through convolutional neural networks. Second, we fuse data from the head-mounted IMU (vestibular prosthesis). Third, we artificially create additional data samples from a small pool of training data for each classification class. Fourth, we use the classified activities to calibrate the reading from the head-mounted IMU. The results indicate that during daily routine activities the firing rate baseline of a vestibular prosthesis system without calibration fluctuates between 100 pulses/s to 150 pulses/s; in contrast, an appropriate calibration to human activity results in correction of 4 pulses/s in extreme cases, providing a stable baseline firing rate while the head is not moving. In this work, we specifically study the contribution of gyroscope scale factor on the drift of the vestibular prosthesis system and propose a corresponding calibration method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的生物惯性运动标定决策系统
我们开发了一种基于学习的前庭假体校准算法,其长期目标是再现无误差的前庭系统动态响应。我们的方法使用一个额外的IMU来检测患者的头部加速度,并纠正前庭假体中相应的漂移。该算法包括四个主要部分。首先,我们从鞋式IMU中提取特征,通过卷积神经网络对人类活动进行分类。其次,我们融合头戴式IMU(前庭假体)的数据。第三,我们人为地从一个小的训练数据池中为每个分类类创建额外的数据样本。第四,我们使用分类活动来校准头戴式IMU的读数。结果表明:在日常活动中,未标定前庭假体系统的放电速率基线在100 ~ 150脉冲/s之间波动;相比之下,对人类活动进行适当的校准,在极端情况下可以校正4脉冲/秒,在头部不移动的情况下提供稳定的基线发射速率。本文具体研究了陀螺仪尺度因子对前庭假体系统漂移的贡献,并提出了相应的标定方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Legionella Species by Photogate-Type Optical Sensor A Nano-Watt Dual-Mode Address Detector for a Wi-Fi Enabled RF Wake-up Receiver Optical Feedback Interferometry imaging sensor for micrometric flow-patterns using continuous scanning DNN-based Outdoor NLOS Human Detection Using IEEE 802.11ac WLAN Signal Disconnect Switch Position Sensor Based on FBG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1