Building spatio-temporal knowledge graphs from vectorized topographic historical maps

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Semantic Web Pub Date : 2022-09-14 DOI:10.3233/sw-222918
Basel Shbita, Craig A. Knoblock, Weiwei Duan, Yao-Yi Chiang, Johannes H. Uhl, S. Leyk
{"title":"Building spatio-temporal knowledge graphs from vectorized topographic historical maps","authors":"Basel Shbita, Craig A. Knoblock, Weiwei Duan, Yao-Yi Chiang, Johannes H. Uhl, S. Leyk","doi":"10.3233/sw-222918","DOIUrl":null,"url":null,"abstract":"Historical maps provide rich information for researchers in many areas, including the social and natural sciences. These maps contain detailed documentation of a wide variety of natural and human-made features and their changes over time, such as changes in transportation networks or the decline of wetlands or forest areas. Analyzing changes over time in such maps can be labor-intensive for a scientist, even after the geographic features have been digitized and converted to a vector format. Knowledge Graphs (KGs) are the appropriate representations to store and link such data and support semantic and temporal querying to facilitate change analysis. KGs combine expressivity, interoperability, and standardization in the Semantic Web stack, thus providing a strong foundation for querying and analysis. In this paper, we present an automatic approach to convert vector geographic features extracted from multiple historical maps into contextualized spatio-temporal KGs. The resulting graphs can be easily queried and visualized to understand the changes in different regions over time. We evaluate our technique on railroad networks and wetland areas extracted from the United States Geological Survey (USGS) historical topographic maps for several regions over multiple map sheets and editions. We also demonstrate how the automatically constructed linked data (i.e., KGs) enable effective querying and visualization of changes over different points in time.","PeriodicalId":48694,"journal":{"name":"Semantic Web","volume":"3 1","pages":"527-549"},"PeriodicalIF":3.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/sw-222918","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Historical maps provide rich information for researchers in many areas, including the social and natural sciences. These maps contain detailed documentation of a wide variety of natural and human-made features and their changes over time, such as changes in transportation networks or the decline of wetlands or forest areas. Analyzing changes over time in such maps can be labor-intensive for a scientist, even after the geographic features have been digitized and converted to a vector format. Knowledge Graphs (KGs) are the appropriate representations to store and link such data and support semantic and temporal querying to facilitate change analysis. KGs combine expressivity, interoperability, and standardization in the Semantic Web stack, thus providing a strong foundation for querying and analysis. In this paper, we present an automatic approach to convert vector geographic features extracted from multiple historical maps into contextualized spatio-temporal KGs. The resulting graphs can be easily queried and visualized to understand the changes in different regions over time. We evaluate our technique on railroad networks and wetland areas extracted from the United States Geological Survey (USGS) historical topographic maps for several regions over multiple map sheets and editions. We also demonstrate how the automatically constructed linked data (i.e., KGs) enable effective querying and visualization of changes over different points in time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于矢量化地形图历史图谱的时空知识图谱构建
历史地图为包括社会科学和自然科学在内的许多领域的研究人员提供了丰富的信息。这些地图包含了各种各样的自然和人为特征及其随时间变化的详细记录,例如交通网络的变化或湿地或森林面积的减少。对科学家来说,即使地理特征已经被数字化并转换成矢量格式,分析这种地图随时间的变化也是一件费力的事情。知识图(Knowledge Graphs, KGs)是存储和链接这些数据并支持语义和时态查询以促进变化分析的适当表示。KGs在语义Web堆栈中结合了表达性、互操作性和标准化,从而为查询和分析提供了坚实的基础。在本文中,我们提出了一种将从多个历史地图中提取的矢量地理特征自动转换为上下文化的时空地理特征图的方法,生成的图形可以很容易地查询和可视化,以了解不同地区随时间的变化。我们对从美国地质调查局(USGS)多个地区的历史地形图中提取的铁路网和湿地区域进行了技术评估。我们还演示了自动构建的链接数据(即KGs)如何能够对不同时间点的变化进行有效的查询和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Semantic Web
Semantic Web COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
8.30
自引率
6.70%
发文量
68
期刊介绍: The journal Semantic Web – Interoperability, Usability, Applicability brings together researchers from various fields which share the vision and need for more effective and meaningful ways to share information across agents and services on the future internet and elsewhere. As such, Semantic Web technologies shall support the seamless integration of data, on-the-fly composition and interoperation of Web services, as well as more intuitive search engines. The semantics – or meaning – of information, however, cannot be defined without a context, which makes personalization, trust, and provenance core topics for Semantic Web research. New retrieval paradigms, user interfaces, and visualization techniques have to unleash the power of the Semantic Web and at the same time hide its complexity from the user. Based on this vision, the journal welcomes contributions ranging from theoretical and foundational research over methods and tools to descriptions of concrete ontologies and applications in all areas. We especially welcome papers which add a social, spatial, and temporal dimension to Semantic Web research, as well as application-oriented papers making use of formal semantics.
期刊最新文献
Wikidata subsetting: Approaches, tools, and evaluation An ontology of 3D environment where a simulated manipulation task takes place (ENVON) Sem@ K: Is my knowledge graph embedding model semantic-aware? Using semantic story maps to describe a territory beyond its map NeuSyRE: Neuro-symbolic visual understanding and reasoning framework based on scene graph enrichment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1