Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY Ecological Complexity Pub Date : 2022-03-01 DOI:10.1016/j.ecocom.2021.100978
Saeed Ahmad Asad
{"title":"Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases - A review","authors":"Saeed Ahmad Asad","doi":"10.1016/j.ecocom.2021.100978","DOIUrl":null,"url":null,"abstract":"<div><p>Plant diseases are among the major causes of the low productivity of crops, causing yield losses of up to 30%, heralding an enormous threat to global food security. Indiscriminate use of chemical-based fungicides for controlling fungal diseases has raised severe concerns about ecosystem health. Moreover, pathogens have become insensitive against these chemicals necessitating excessive use of chemicals for adequate control. The resulting accumulation of these chemicals in the food chain has provoked numerous health complications. For combating the adversaries of chemical-based fungicides, biological control of fungal pathogens is proposed as an eco-friendly alternative. Among various biological controls, <em>Trichoderma</em>-based biological control agents (BCAs) are widely used in agriculture for controlling soil-borne pathogens. These BCAs are commercialized and known as; stimulators of resistance in plants, growth enhancers, bio-fertilizers, and bio-pesticides. Biological management of plant pathogens has yielded valuable results in the sustainability of ecosystems and compelling improvements in the quality and quantity of agricultural produce. These BCAs exhibit potential against pathogens, remarkably improve photosynthesis, plant growth, and nutrient use efficiency for impressive crop yields. Despite these peculiarities, <em>Trichoderma</em>'s mechanisms against pathogens and their growth promotional effects are not thoroughly investigated, hence formulating the prime objective of the current review. Along with these, <em>Trichoderma</em>-based fungicides marketed in different geographical locations are encompassed in this review. Finally, the knowledge gaps and future research directions for improving the efficacy of <em>Trichoderma</em>-based BCAs are discussed.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"49 ","pages":"Article 100978"},"PeriodicalIF":3.1000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X21000714","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 28

Abstract

Plant diseases are among the major causes of the low productivity of crops, causing yield losses of up to 30%, heralding an enormous threat to global food security. Indiscriminate use of chemical-based fungicides for controlling fungal diseases has raised severe concerns about ecosystem health. Moreover, pathogens have become insensitive against these chemicals necessitating excessive use of chemicals for adequate control. The resulting accumulation of these chemicals in the food chain has provoked numerous health complications. For combating the adversaries of chemical-based fungicides, biological control of fungal pathogens is proposed as an eco-friendly alternative. Among various biological controls, Trichoderma-based biological control agents (BCAs) are widely used in agriculture for controlling soil-borne pathogens. These BCAs are commercialized and known as; stimulators of resistance in plants, growth enhancers, bio-fertilizers, and bio-pesticides. Biological management of plant pathogens has yielded valuable results in the sustainability of ecosystems and compelling improvements in the quality and quantity of agricultural produce. These BCAs exhibit potential against pathogens, remarkably improve photosynthesis, plant growth, and nutrient use efficiency for impressive crop yields. Despite these peculiarities, Trichoderma's mechanisms against pathogens and their growth promotional effects are not thoroughly investigated, hence formulating the prime objective of the current review. Along with these, Trichoderma-based fungicides marketed in different geographical locations are encompassed in this review. Finally, the knowledge gaps and future research directions for improving the efficacy of Trichoderma-based BCAs are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木霉防治植物真菌病害的作用机制及生物防治潜力综述
植物病害是作物生产力低下的主要原因之一,造成高达30%的产量损失,预示着对全球粮食安全的巨大威胁。为控制真菌疾病而滥用化学杀菌剂已引起对生态系统健康的严重关切。此外,病原体已变得对这些化学品不敏感,因此需要过度使用化学品进行充分控制。这些化学物质在食物链中积累的结果引发了许多健康并发症。为了对抗化学杀菌剂的对手,真菌病原体的生物控制被提出作为一种生态友好的替代方案。在各种生物防治中,以木霉为基础的生物防治剂(bca)被广泛应用于农业中防治土传病原体。这些bca是商业化的,被称为;植物抗性刺激剂,生长促进剂,生物肥料和生物农药。植物病原体的生物管理在生态系统的可持续性和农产品质量和数量的显著改善方面取得了宝贵的成果。这些bca具有抗病原体的潜力,显著改善光合作用、植物生长和养分利用效率,从而提高作物产量。尽管有这些特点,木霉对抗病原体的机制及其促进生长的作用尚未得到彻底的研究,因此制定了本综述的主要目标。除此之外,本综述还包括在不同地理位置销售的基于木霉的杀菌剂。最后,讨论了提高木霉bca功效的知识缺口和未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
期刊最新文献
Enhancing maximum sustainable yield in a patchy prey–predator environment A scale-invariant method for quantifying the regularity of environmental spatial patterns Assessing the ecological complexity and uncertainty of predicting forest ecosystem services under climate change Transitive and intransitive structures in competition-based ecological communities The central importance of the honeybee (Apis mellifera L.) within plant-bee interaction networks decreases along a Neotropical elevational gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1