Antonio J Signes-Pastor, Vicki Sayarath, Brian Jackson, Kathryn L Cottingham, Tracy Punshon, Margaret R Karagas
{"title":"Dietary Exposure to Essential and Non-essential Elements During Infants' First Year of Life in the New Hampshire Birth Cohort Study.","authors":"Antonio J Signes-Pastor, Vicki Sayarath, Brian Jackson, Kathryn L Cottingham, Tracy Punshon, Margaret R Karagas","doi":"10.1007/s12403-022-00489-x","DOIUrl":null,"url":null,"abstract":"<p><p>Even the low levels of non-essential elements exposure common in the US may have health consequences especially early in life. However, little is known about the infant's dynamic exposure to essential and non-essential elements. This study aims to evaluate exposure to essential and non-essential elements during infants' first year of life and to explore the association between the exposure and rice consumption. Paired urine samples from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) were collected at approximately 6 weeks (exclusively breastfed) and at 1 year of age after weaning (<i>n</i> = 187). A further independent subgroup of NHBCS infants with details about rice consumption at 1 year of age also was included (<i>n</i> = 147). Urinary concentrations of 8 essential (Co, Cr, Cu, Fe, Mn, Mo, Ni, and Se) and 9 non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, V, and U) elements were determined as a measure of exposure. Several essential (Co, Fe, Mo, Ni, and Se) and non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, and V) elements had higher concentrations at 1 year than at 6 weeks of age. The highest increases were for urinary As and Mo with median concentrations of 0.20 and 1.02 µg/L at 6 weeks and 2.31 and 45.36 µg/L at 1 year of age, respectively. At 1 year of age, As and Mo urine concentrations were related to rice consumption. Further efforts are necessary to minimize exposure to non-essential elements while retaining essential elements to protect and promote children's health.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12403-022-00489-x.</p>","PeriodicalId":12116,"journal":{"name":"Exposure and Health","volume":"15 1","pages":"269-279"},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exposure and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12403-022-00489-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Even the low levels of non-essential elements exposure common in the US may have health consequences especially early in life. However, little is known about the infant's dynamic exposure to essential and non-essential elements. This study aims to evaluate exposure to essential and non-essential elements during infants' first year of life and to explore the association between the exposure and rice consumption. Paired urine samples from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) were collected at approximately 6 weeks (exclusively breastfed) and at 1 year of age after weaning (n = 187). A further independent subgroup of NHBCS infants with details about rice consumption at 1 year of age also was included (n = 147). Urinary concentrations of 8 essential (Co, Cr, Cu, Fe, Mn, Mo, Ni, and Se) and 9 non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, V, and U) elements were determined as a measure of exposure. Several essential (Co, Fe, Mo, Ni, and Se) and non-essential (Al, As, Cd, Hg, Pb, Sb, Sn, and V) elements had higher concentrations at 1 year than at 6 weeks of age. The highest increases were for urinary As and Mo with median concentrations of 0.20 and 1.02 µg/L at 6 weeks and 2.31 and 45.36 µg/L at 1 year of age, respectively. At 1 year of age, As and Mo urine concentrations were related to rice consumption. Further efforts are necessary to minimize exposure to non-essential elements while retaining essential elements to protect and promote children's health.
Supplementary information: The online version contains supplementary material available at 10.1007/s12403-022-00489-x.
期刊介绍:
It is a multidisciplinary journal focused on global human health consequences of exposure to water pollution in natural and engineered environments. The journal provides a unique platform for scientists in this field to exchange ideas and share information on research for the solution of health effects of exposure to water pollution.
Coverage encompasses Engineering sciences; Biogeochemical sciences; Health sciences; Exposure analysis and Epidemiology; Social sciences and public policy; Mathematical, numerical and statistical methods; Experimental, data collection and data analysis methods and more.
Research topics include local, regional and global water pollution, exposure and health problems; health risk analysis of water pollution, methods of quantification and analysis of risk under uncertainty; aquatic biogeochemical processes in natural and engineered systems and health effects; analysis of pollution, exposure and health data; and more.