LVCMOS Based Thermal Aware Energy Efficient Vedic Multiplier Design on FPGA

Kavita Goswami, B. Pandey
{"title":"LVCMOS Based Thermal Aware Energy Efficient Vedic Multiplier Design on FPGA","authors":"Kavita Goswami, B. Pandey","doi":"10.1109/CICN.2014.194","DOIUrl":null,"url":null,"abstract":"In this work, we are integrating thermal aware design approach in energy efficient Vedic multiplier on FPGA. In the beginning of this universe, Veda describes heat receiving from the Sun god as Suryamrit (Surya i.e. Sun +Amrit i.e. Nectar= Suryamrit i.e. Nectar coming from the Sun God). Now, whole world is feeling anxious about temperature. How our thinking pattern is changing with evolution of mankind? This paper deals with that question and the whole work is going in direction to get solution of this problem with mechanism of ambient (room) temperature scaling and energy efficient LVCMOS I/O standard. LVCMOS is an acronym for low voltage complementary metal oxide semiconductor. In this Vedic multiplier, we are using three LVCMOS I/O standard. LVCMOS12 is available only in 65nm and 40nm FPGA. Rest LVCMOS18 and LVCMOS25 is available among 40nm, 65nm and 90nm FPGA. In order to test the thermal sustainability of our Vedic multiplier, we are testing it in three different room temperature 20°C, 30°C, and 40°C. Using LVCMOS25, there is 12.99%, 19.23% and 10.28% reduction in power dissipation on 90nm, 65nm and 40nm respectively. For LVCMOS25, when our Vedic multiplier design is migrated from 40nm design to 90nm design, there is 87.72% reduction in power dissipation of Vedic multiplier when temperature is constant 20°C.","PeriodicalId":6487,"journal":{"name":"2014 International Conference on Computational Intelligence and Communication Networks","volume":"24 1","pages":"921-924"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computational Intelligence and Communication Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2014.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this work, we are integrating thermal aware design approach in energy efficient Vedic multiplier on FPGA. In the beginning of this universe, Veda describes heat receiving from the Sun god as Suryamrit (Surya i.e. Sun +Amrit i.e. Nectar= Suryamrit i.e. Nectar coming from the Sun God). Now, whole world is feeling anxious about temperature. How our thinking pattern is changing with evolution of mankind? This paper deals with that question and the whole work is going in direction to get solution of this problem with mechanism of ambient (room) temperature scaling and energy efficient LVCMOS I/O standard. LVCMOS is an acronym for low voltage complementary metal oxide semiconductor. In this Vedic multiplier, we are using three LVCMOS I/O standard. LVCMOS12 is available only in 65nm and 40nm FPGA. Rest LVCMOS18 and LVCMOS25 is available among 40nm, 65nm and 90nm FPGA. In order to test the thermal sustainability of our Vedic multiplier, we are testing it in three different room temperature 20°C, 30°C, and 40°C. Using LVCMOS25, there is 12.99%, 19.23% and 10.28% reduction in power dissipation on 90nm, 65nm and 40nm respectively. For LVCMOS25, when our Vedic multiplier design is migrated from 40nm design to 90nm design, there is 87.72% reduction in power dissipation of Vedic multiplier when temperature is constant 20°C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LVCMOS的热感知节能吠陀乘法器的FPGA设计
在这项工作中,我们将热感知设计方法集成到FPGA上的节能吠陀乘法器中。在这个宇宙的开始,吠陀将从太阳神接收的热量描述为苏利亚利特(苏利亚即太阳+阿姆利特即甘露=苏利亚利特即来自太阳神的甘露)。现在,全世界都在为温度感到焦虑。我们的思维模式是如何随着人类的进化而变化的?本文对这一问题进行了研究,并从环境(室内)温度缩放机制和节能LVCMOS I/O标准出发,朝着解决这一问题的方向发展。LVCMOS是低压互补金属氧化物半导体的缩写。在这个吠陀乘法器中,我们使用了三个LVCMOS I/O标准。LVCMOS12仅适用于65nm和40nm FPGA。其余LVCMOS18和LVCMOS25可用于40nm, 65nm和90nm FPGA。为了测试我们的吠陀乘数器的热可持续性,我们在三种不同的室温下进行测试,分别是20°C、30°C和40°C。采用LVCMOS25, 90nm、65nm和40nm的功耗分别降低12.99%、19.23%和10.28%。对于LVCMOS25,当我们的吠陀倍增器设计从40nm设计迁移到90nm设计时,当温度恒定为20℃时,吠陀倍增器的功耗降低了87.72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Flow Control of all Vanadium Flow Battery Energy Storage Based on Fuzzy Algorithm Synthetic Aperture Radar System Using Digital Chirp Signal Generator Based on the Piecewise Higher Order Polynomial Interpolation Technique Frequency-Domain Equalization for E-Band Transmission System A Mean-Semi-variance Portfolio Optimization Model with Full Transaction Costs Detailed Evaluation of DEM Interpolation Methods in GIS Using DGPS Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1