Short review of nonplanar fused deposition modeling printing

Georg Aarnes Nisja, Anni Cao, Chao Gao
{"title":"Short review of nonplanar fused deposition modeling printing","authors":"Georg Aarnes Nisja,&nbsp;Anni Cao,&nbsp;Chao Gao","doi":"10.1002/mdp2.221","DOIUrl":null,"url":null,"abstract":"<p>As one of the additive manufacturing (AM) methods, fused deposition modeling (FDM) technology is widely adopted but involves some limitations in lacking surface quality and mechanical properties due to the use of only planar layers. This review will explore the novel FDM approach, curved layer FDM (CLFDM) where a nonplanar slicing technique is introduced to improve on these shortcomings. Recently, this technique has gained more and more traction in the industry and among consumers owing to not only its great potential to overcome several manufacturing limitations of conventional FDM method such as the “staircase effect” and poor bonding strength of curved surfaces or shells but also enhanced mechanical properties of CLFDM printed parts. The present review mainly focuses on the toolpath generation, process adaptations, mechanical properties of the printed part, and novel applications in the CLFDM method.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mdp2.221","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

As one of the additive manufacturing (AM) methods, fused deposition modeling (FDM) technology is widely adopted but involves some limitations in lacking surface quality and mechanical properties due to the use of only planar layers. This review will explore the novel FDM approach, curved layer FDM (CLFDM) where a nonplanar slicing technique is introduced to improve on these shortcomings. Recently, this technique has gained more and more traction in the industry and among consumers owing to not only its great potential to overcome several manufacturing limitations of conventional FDM method such as the “staircase effect” and poor bonding strength of curved surfaces or shells but also enhanced mechanical properties of CLFDM printed parts. The present review mainly focuses on the toolpath generation, process adaptations, mechanical properties of the printed part, and novel applications in the CLFDM method.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平面熔融沉积造型印刷技术综述
作为增材制造(AM)方法之一,熔融沉积建模(FDM)技术被广泛采用,但由于仅使用平面层,存在表面质量和力学性能不足的局限性。本文将探讨一种新的FDM方法,弯曲层FDM (CLFDM),其中引入了一种非平面切片技术来改进这些缺点。近年来,该技术在工业界和消费者中越来越受到关注,因为它不仅具有巨大的潜力,克服了传统FDM方法的几个制造限制,如“楼梯效应”和曲面或外壳的结合强度差,而且还提高了CLFDM打印件的机械性能。本文主要综述了刀具轨迹生成、工艺适应性、打印件力学性能及其在CLFDM方法中的新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
期刊最新文献
The Effect of Preexisting Fracture Angles on Crack Propagation in Sandstone Joining 1.1- and 2.1-mm Al Sheets by Friction Stir Spot Welding Study of Printability, Microstructure, and Hardness of Al-4Mn-1.3Mg-0.3Zr Alloy Produced by Powder Bed Fusion–Laser Beam Drilling of Ti Grade-2 Alloy Using WC Tool in Micro-EDM and Its Multiparameter Optimization The Influence of Rice Husk Additives on the Properties of Glass Based—Geopolymer at High Temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1