{"title":"LC-MS/MS-based metabolomic profiling identifies candidate biomarkers in follicular fluid of infertile women with chronic pelvic inflammatory disease.","authors":"Xuekun Huang, Zhiwei Weng, Shuting Zhang, Xuerong Li, Shaohu Zhou, Jingyao Liang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>How chronic pelvic inflammatory disease (CPID), the most common cause of infertility, affects metabolic profiles of follicular fluid (FF) remains unknown. This study aimed to identify candidate biomarkers in FF of infertile women with CPID.</p><p><strong>Method: </strong>FF samples were collected from infertile women with CPID (n = 8) and healthy controls (n = 8) at the time of oocyte retrieval. Untargeted metabolomic profiling of FF samples was conducted using the liquid chromatography-tandem mass spectrometry (LC-MS/MS).</p><p><strong>Results: </strong>A total of 240 differential metabolites (104 named biochemicals and 136 unnamed biochemicals) were screened out and identified. Among them, pregnane-3,3-diol, pc(p-18:1(11z)/18:3(6z,9z,12z)), and 1-octadecanoyl-2-(4z,7z,10z,13z,16z,19z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine were markedly down-regulated, while 17,21-dihydroxypregnenolone was significantly up-regulated in infertile women with CPID. Furthermore, KEGG biological pathway analysis revealed that these metabolites were especially enriched in steroid hormone biosynthesis, glyoxylate and dicarboxylate metabolism, glucagon signaling pathway, and the tricarboxylic acid (TCA) cycle.</p><p><strong>Conclusion: </strong>FF of infertile women with CPID showed unique metabolic changes that may be involved in the pathogenesis of infertility and serve as new therapeutic targets or diagnostic biomarkers.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993017/pdf/ijcep0016-0020.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: How chronic pelvic inflammatory disease (CPID), the most common cause of infertility, affects metabolic profiles of follicular fluid (FF) remains unknown. This study aimed to identify candidate biomarkers in FF of infertile women with CPID.
Method: FF samples were collected from infertile women with CPID (n = 8) and healthy controls (n = 8) at the time of oocyte retrieval. Untargeted metabolomic profiling of FF samples was conducted using the liquid chromatography-tandem mass spectrometry (LC-MS/MS).
Results: A total of 240 differential metabolites (104 named biochemicals and 136 unnamed biochemicals) were screened out and identified. Among them, pregnane-3,3-diol, pc(p-18:1(11z)/18:3(6z,9z,12z)), and 1-octadecanoyl-2-(4z,7z,10z,13z,16z,19z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine were markedly down-regulated, while 17,21-dihydroxypregnenolone was significantly up-regulated in infertile women with CPID. Furthermore, KEGG biological pathway analysis revealed that these metabolites were especially enriched in steroid hormone biosynthesis, glyoxylate and dicarboxylate metabolism, glucagon signaling pathway, and the tricarboxylic acid (TCA) cycle.
Conclusion: FF of infertile women with CPID showed unique metabolic changes that may be involved in the pathogenesis of infertility and serve as new therapeutic targets or diagnostic biomarkers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.