{"title":"Radiation Pattern Synthesis and Mutual Coupling Compensation in Spherical Conformal Array Antennas","authors":"T. A. Khan, M. I. Khattak, A. Tariq","doi":"10.47037/2020.aces.j.360612","DOIUrl":null,"url":null,"abstract":"This paper presents a novel technique based on Hybrid Spatial Distance Reduction Algorithm (HSDRA), to compensate the effects of deformity and mutual coupling occurred due to surface change in conformal arrays. This antenna surface deformation shifts the position of null points and loss of the main beam resulting in reduced antenna gain along with substantial undesirable effects on the antenna performance. The proposed algorithm, which cumulatively incorporates the Linearly Constraint Least Square Optimization (LCLSO) and Quadratically Constraint Least Square Optimization (QCLSO) techniques, is formulated to minimize/reduce the absolute distance between the actual (simulated/measured) radiation pattern and the desired radiation pattern while keeping the direction of main beam and nulls position under control. In particular, a 4x4 conformal microstrip phased array from planar surface is deformed to prescribe spherical-shape surface with various radii of curvature, is validated. For the enhancement of Gain of the conformal array antenna, Gain Maximization Algorithm is also proposed, the simulated results of which is compared to the traditional Phase compensation technique and unconstraint least squares optimization. The analytical results for both planar and spherical deformed configurations are first evaluated in MATLAB and then validated through Computer Simulation Technology (CST).","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.aces.j.360612","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a novel technique based on Hybrid Spatial Distance Reduction Algorithm (HSDRA), to compensate the effects of deformity and mutual coupling occurred due to surface change in conformal arrays. This antenna surface deformation shifts the position of null points and loss of the main beam resulting in reduced antenna gain along with substantial undesirable effects on the antenna performance. The proposed algorithm, which cumulatively incorporates the Linearly Constraint Least Square Optimization (LCLSO) and Quadratically Constraint Least Square Optimization (QCLSO) techniques, is formulated to minimize/reduce the absolute distance between the actual (simulated/measured) radiation pattern and the desired radiation pattern while keeping the direction of main beam and nulls position under control. In particular, a 4x4 conformal microstrip phased array from planar surface is deformed to prescribe spherical-shape surface with various radii of curvature, is validated. For the enhancement of Gain of the conformal array antenna, Gain Maximization Algorithm is also proposed, the simulated results of which is compared to the traditional Phase compensation technique and unconstraint least squares optimization. The analytical results for both planar and spherical deformed configurations are first evaluated in MATLAB and then validated through Computer Simulation Technology (CST).
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.