Radiation Pattern Synthesis and Mutual Coupling Compensation in Spherical Conformal Array Antennas

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2021-01-01 DOI:10.47037/2020.aces.j.360612
T. A. Khan, M. I. Khattak, A. Tariq
{"title":"Radiation Pattern Synthesis and Mutual Coupling Compensation in Spherical Conformal Array Antennas","authors":"T. A. Khan, M. I. Khattak, A. Tariq","doi":"10.47037/2020.aces.j.360612","DOIUrl":null,"url":null,"abstract":"This paper presents a novel technique based on Hybrid Spatial Distance Reduction Algorithm (HSDRA), to compensate the effects of deformity and mutual coupling occurred due to surface change in conformal arrays. This antenna surface deformation shifts the position of null points and loss of the main beam resulting in reduced antenna gain along with substantial undesirable effects on the antenna performance. The proposed algorithm, which cumulatively incorporates the Linearly Constraint Least Square Optimization (LCLSO) and Quadratically Constraint Least Square Optimization (QCLSO) techniques, is formulated to minimize/reduce the absolute distance between the actual (simulated/measured) radiation pattern and the desired radiation pattern while keeping the direction of main beam and nulls position under control. In particular, a 4x4 conformal microstrip phased array from planar surface is deformed to prescribe spherical-shape surface with various radii of curvature, is validated. For the enhancement of Gain of the conformal array antenna, Gain Maximization Algorithm is also proposed, the simulated results of which is compared to the traditional Phase compensation technique and unconstraint least squares optimization. The analytical results for both planar and spherical deformed configurations are first evaluated in MATLAB and then validated through Computer Simulation Technology (CST).","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.aces.j.360612","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel technique based on Hybrid Spatial Distance Reduction Algorithm (HSDRA), to compensate the effects of deformity and mutual coupling occurred due to surface change in conformal arrays. This antenna surface deformation shifts the position of null points and loss of the main beam resulting in reduced antenna gain along with substantial undesirable effects on the antenna performance. The proposed algorithm, which cumulatively incorporates the Linearly Constraint Least Square Optimization (LCLSO) and Quadratically Constraint Least Square Optimization (QCLSO) techniques, is formulated to minimize/reduce the absolute distance between the actual (simulated/measured) radiation pattern and the desired radiation pattern while keeping the direction of main beam and nulls position under control. In particular, a 4x4 conformal microstrip phased array from planar surface is deformed to prescribe spherical-shape surface with various radii of curvature, is validated. For the enhancement of Gain of the conformal array antenna, Gain Maximization Algorithm is also proposed, the simulated results of which is compared to the traditional Phase compensation technique and unconstraint least squares optimization. The analytical results for both planar and spherical deformed configurations are first evaluated in MATLAB and then validated through Computer Simulation Technology (CST).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球面共形阵列天线的辐射方向图合成与互耦合补偿
本文提出了一种基于混合空间距离缩减算法(HSDRA)的新技术,用于补偿共形阵列中由于表面变化而产生的变形和相互耦合的影响。这种天线表面变形改变了零点的位置和主波束的损失,导致天线增益降低,并对天线性能产生实质性的不良影响。该算法综合了线性约束最小二乘优化(LCLSO)和二次约束最小二乘优化(QCLSO)技术,在控制主波束方向和零点位置的同时,最小化/减小实际(模拟/测量)辐射方向图与期望辐射方向图之间的绝对距离。特别地,将一个4 × 4共形微带相控阵从平面表面变形成具有不同曲率半径的球形表面,进行了验证。为了提高共形阵列天线的增益,提出了增益最大化算法,并将仿真结果与传统的相位补偿技术和无约束最小二乘优化方法进行了比较。首先在MATLAB中对平面和球面变形构型的分析结果进行了评估,然后通过计算机仿真技术(CST)对分析结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1