Integrity Failure of Cement Sheath Owing to Hydraulic Fracturing and Casing Off-Center in Horizontal Shale Gas Wells

Kui Liu, D. Gao, A. D. Taleghani
{"title":"Integrity Failure of Cement Sheath Owing to Hydraulic Fracturing and Casing Off-Center in Horizontal Shale Gas Wells","authors":"Kui Liu, D. Gao, A. D. Taleghani","doi":"10.2118/191196-MS","DOIUrl":null,"url":null,"abstract":"\n The sustained casing pressure (SCP) in shale gas wells caused by cement sheath failure can have serious impacts on safe and efficient gas production. Although horizontal wells are widely used for production from Shales, the cementing quality and casing centericity is barely ensured. Among other indications, the casing off-center is iedtified very often in the wells with SCP problem in Sichuan field. Hence, the objective of this study is to analyze the effect of the casing off-center on the integrity of the cement sheath. To better understand stress distribution in eccentric cement sheaths, an analytical model is proposed in this paper. By comparing the results of this model with the centeric casing, the impacts of casing off-center on integrity of the cement sheath is analyzed. During the fracturing treatment, the casing off-center has little effect on stress in the cement sheath if the well is well cemented and bonded to the formation rock. But on the contrary, the casing off-center has serious effects on stress distribution if the cementing is done poorly. The debonding of casing-cement-formation interfaces can significantly increase the circumferential stress at the cement sheath. At the narrow side of the cement sheath, the circumferential stress could be 2.5 times higher than the thick side. The offset magnitude of the casing eccentricity has little effect on the radial stress in the cement sheath but it can significantly increase the shear stress. We found that the risk of cement failure may reduce by making casing string more centralized, increasing the thickness of casing. The results provide insights for design practices led to better integrity in shale gas wells.","PeriodicalId":11006,"journal":{"name":"Day 3 Wed, June 27, 2018","volume":"74 11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, June 27, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191196-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sustained casing pressure (SCP) in shale gas wells caused by cement sheath failure can have serious impacts on safe and efficient gas production. Although horizontal wells are widely used for production from Shales, the cementing quality and casing centericity is barely ensured. Among other indications, the casing off-center is iedtified very often in the wells with SCP problem in Sichuan field. Hence, the objective of this study is to analyze the effect of the casing off-center on the integrity of the cement sheath. To better understand stress distribution in eccentric cement sheaths, an analytical model is proposed in this paper. By comparing the results of this model with the centeric casing, the impacts of casing off-center on integrity of the cement sheath is analyzed. During the fracturing treatment, the casing off-center has little effect on stress in the cement sheath if the well is well cemented and bonded to the formation rock. But on the contrary, the casing off-center has serious effects on stress distribution if the cementing is done poorly. The debonding of casing-cement-formation interfaces can significantly increase the circumferential stress at the cement sheath. At the narrow side of the cement sheath, the circumferential stress could be 2.5 times higher than the thick side. The offset magnitude of the casing eccentricity has little effect on the radial stress in the cement sheath but it can significantly increase the shear stress. We found that the risk of cement failure may reduce by making casing string more centralized, increasing the thickness of casing. The results provide insights for design practices led to better integrity in shale gas wells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
页岩气水平井水力压裂及套管离心导致的水泥环完整性破坏
在页岩气井中,水泥环失效引起的持续套管压力严重影响到安全高效的产气。虽然水平井在页岩油气生产中得到了广泛应用,但固井质量和套管中心性很难得到保证。在四川油田的SCP问题井中,经常发现套管离心问题。因此,本研究的目的是分析套管偏离中心对水泥环完整性的影响。为了更好地理解偏心水泥环的应力分布,本文提出了一个解析模型。通过将该模型与中心套管的计算结果进行比较,分析了套管偏离中心对水泥环完整性的影响。在压裂过程中,如果井与地层岩石胶结良好,套管离心对水泥环内应力的影响很小。相反,如果固井做得不好,套管离心会对应力分布造成严重影响。套管-水泥-地层界面的脱粘会显著增加水泥环的周向应力。水泥环窄侧的周向应力比厚侧高2.5倍。套管偏心偏置量对水泥环内径向应力影响不大,但会显著增加水泥环内的剪切应力。研究发现,使套管柱更加集中,增加套管厚度,可以降低固井破坏的风险。研究结果为页岩气井的设计实践提供了见解,从而提高了井的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Integrated Dynamic Asset Modeling to Predict and Resolve Production Instabilities in an Offshore Facility, A Case Study, Mexico The Casing Deformation During Shale Gas Hydraulic Fracturing: Why it is so Serious in Weiyuan-Changning, China? Re-Evaluating Contributions from Thin Bedded Reservoirs: Integrated Reservoir Modelling of the Greater Dolphin Area Experimental Evaluation of Sand Porosity in Eagle Ford Shale Fractures An Experimental Investigation of Proppant Diagenesis and Proppant-Formation-Fluid Interactions in Hydraulic Fracturing of Eagle Ford Shale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1