Layer Assignment and Equal-length Routing for Disordered Pins in PCB Design

Ran Zhang, Tieyuan Pan, Li Zhu, Takahiro Watanabe
{"title":"Layer Assignment and Equal-length Routing for Disordered Pins in PCB Design","authors":"Ran Zhang, Tieyuan Pan, Li Zhu, Takahiro Watanabe","doi":"10.2197/ipsjtsldm.8.75","DOIUrl":null,"url":null,"abstract":"In recent printed circuit board (PCB) design, due to the high density of integration, the signal propagation delay or skew has become an important factor for a circuit performance. As the routing delay is proportional to the wire length, the controllability of the wire length is usually focused on. In this research, a heuristic algorithm to get equal-length routing for disordered pins in PCB design is proposed. The approach initially checks the longest common subsequence of source and target pin sets to assign layers for pins. Single commodity flow is then carried out to generate the base routes. Finally, considering target length requirement and available routing region, R-flip and C-flip are adopted to adjust the wire length. The experimental results show that the proposed method is able to obtain the routes with better wire length balance and smaller worst length error in reasonable CPU times.","PeriodicalId":38964,"journal":{"name":"IPSJ Transactions on System LSI Design Methodology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on System LSI Design Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtsldm.8.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

In recent printed circuit board (PCB) design, due to the high density of integration, the signal propagation delay or skew has become an important factor for a circuit performance. As the routing delay is proportional to the wire length, the controllability of the wire length is usually focused on. In this research, a heuristic algorithm to get equal-length routing for disordered pins in PCB design is proposed. The approach initially checks the longest common subsequence of source and target pin sets to assign layers for pins. Single commodity flow is then carried out to generate the base routes. Finally, considering target length requirement and available routing region, R-flip and C-flip are adopted to adjust the wire length. The experimental results show that the proposed method is able to obtain the routes with better wire length balance and smaller worst length error in reasonable CPU times.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCB设计中无序引脚的层分配与等长布线
在近年来的印刷电路板(PCB)设计中,由于集成度高,信号的传播延迟或倾斜已成为影响电路性能的一个重要因素。由于路由延迟与线长成正比,因此通常关注线长可控性。针对PCB设计中无序引脚的等长布线问题,提出了一种启发式算法。该方法首先检查源引脚集和目标引脚集的最长公共子序列,为引脚分配层。然后进行单一商品流生成基本路线。最后,考虑目标长度要求和可用路由区域,采用r翻转和c翻转来调整导线长度。实验结果表明,该方法能够在合理的CPU时间内获得线长平衡较好、最坏长度误差较小的路由。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IPSJ Transactions on System LSI Design Methodology
IPSJ Transactions on System LSI Design Methodology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Measurement Results of Real Circuit Delay Degradation under Realistic Workload A CMOS-compatible Non-volatile Memory Element using Fishbone-in-cage Capacitor Parallelizing Random and SAT-based Verification Processes for Improving Toggle Coverage LLVM-C2RTL: C/C++ Based System Level RTL Design Framework Using LLVM Compiler Infrastructure Feature Vectors Based on Wire Width and Distance for Lithography Hotspot Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1