MohammadAli Moslemi Petrudi, M. S. Kiasat, Manouchehr Fadavi, Amin Moslemi Petrudi
{"title":"Experimental Study of Fatigue Durability in Bending Effect on Welded Joints in Steel Profiles","authors":"MohammadAli Moslemi Petrudi, M. S. Kiasat, Manouchehr Fadavi, Amin Moslemi Petrudi","doi":"10.30544/554","DOIUrl":null,"url":null,"abstract":"Ships are always prone to fatigue through high periodic loads, usually caused by waves and changing load conditions. So, fatigue is an important factor in design. One of the reasons for fatigue in welding parts is variable bending loads. In this paper, a specimen of low-carbon steel T-Bar profiles is used, along with plates of the same type of steel that have been welded by the manual electrode welding process. To determine the distribution of static and dynamic forces created by welding, the specimens were subjected to bending (three-point loading) and tensile tests, and finally fatigue tests. The T-Bar Steel profile has more tolerance for fatigue loads than welded. The load T-Bar profile has not failed until the two million cycles, while the welding specimen has failed in about 3×10 cycles. Finally, strong penetrating welds should be used if a stronger welding joint is required.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30544/554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ships are always prone to fatigue through high periodic loads, usually caused by waves and changing load conditions. So, fatigue is an important factor in design. One of the reasons for fatigue in welding parts is variable bending loads. In this paper, a specimen of low-carbon steel T-Bar profiles is used, along with plates of the same type of steel that have been welded by the manual electrode welding process. To determine the distribution of static and dynamic forces created by welding, the specimens were subjected to bending (three-point loading) and tensile tests, and finally fatigue tests. The T-Bar Steel profile has more tolerance for fatigue loads than welded. The load T-Bar profile has not failed until the two million cycles, while the welding specimen has failed in about 3×10 cycles. Finally, strong penetrating welds should be used if a stronger welding joint is required.