Fault diagnosis in an extra-high voltage power line

O. Babayomi, P. Oluseyi, N. Ofodile, Godbless Keku
{"title":"Fault diagnosis in an extra-high voltage power line","authors":"O. Babayomi, P. Oluseyi, N. Ofodile, Godbless Keku","doi":"10.1109/POWERAFRICA.2017.7991243","DOIUrl":null,"url":null,"abstract":"The use of fuzzy and adaptive neuro-fuzzy technique for fault detection, classification and location is presented in this study. Ten different types of electrical faults in a transmission line were investigated. The results obtained show that a high degree of accuracy was recorded for detection, classification and location of electrical faults in the extra-high voltage line. Ongoing studies on the subject are expected to further improve levels of accuracy in fault classification and location especially.","PeriodicalId":6601,"journal":{"name":"2017 IEEE PES PowerAfrica","volume":"59 1","pages":"311-316"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERAFRICA.2017.7991243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The use of fuzzy and adaptive neuro-fuzzy technique for fault detection, classification and location is presented in this study. Ten different types of electrical faults in a transmission line were investigated. The results obtained show that a high degree of accuracy was recorded for detection, classification and location of electrical faults in the extra-high voltage line. Ongoing studies on the subject are expected to further improve levels of accuracy in fault classification and location especially.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特高压输电线故障诊断
本文提出了利用模糊和自适应神经模糊技术进行故障检测、分类和定位。研究了输电线路中十种不同类型的电气故障。结果表明,该方法对特高压线路电气故障的检测、分类和定位具有较高的准确性。正在进行的研究有望进一步提高断层分类和定位的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimized network planning of mini-grids for the rural electrification of developing countries Application of statistical tools in power transformer FRA results interpretation: Transformer winding diagnosis based on frequency response analysis An algorithm for micro-load shedding in generation constrained electricity distribution network Asynchronous interconnection of the proposed East Africa Power Pool (EAPP) Impact of large scale grid-connected wind generators on the power system network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1