Monitoring policy in the context of preventive treatment of cardiovascular disease.

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Health Care Management Science Pub Date : 2023-03-01 DOI:10.1007/s10729-022-09621-4
Daniel F Otero-Leon, Mariel S Lavieri, Brian T Denton, Jeremy Sussman, Rodney A Hayward
{"title":"Monitoring policy in the context of preventive treatment of cardiovascular disease.","authors":"Daniel F Otero-Leon,&nbsp;Mariel S Lavieri,&nbsp;Brian T Denton,&nbsp;Jeremy Sussman,&nbsp;Rodney A Hayward","doi":"10.1007/s10729-022-09621-4","DOIUrl":null,"url":null,"abstract":"<p><p>Preventing chronic diseases is an essential aspect of medical care. To prevent chronic diseases, physicians focus on monitoring their risk factors and prescribing the necessary medication. The optimal monitoring policy depends on the patient's risk factors and demographics. Monitoring too frequently may be unnecessary and costly; on the other hand, monitoring the patient infrequently means the patient may forgo needed treatment and experience adverse events related to the disease. We propose a finite horizon and finite-state Markov decision process to define monitoring policies. To build our Markov decision process, we estimate stochastic models based on longitudinal observational data from electronic health records for a large cohort of patients seen in the national U.S. Veterans Affairs health system. We use our model to study policies for whether or when to assess the need for cholesterol-lowering medications. We further use our model to investigate the role of gender and race on optimal monitoring policies.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 1","pages":"93-116"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-022-09621-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Preventing chronic diseases is an essential aspect of medical care. To prevent chronic diseases, physicians focus on monitoring their risk factors and prescribing the necessary medication. The optimal monitoring policy depends on the patient's risk factors and demographics. Monitoring too frequently may be unnecessary and costly; on the other hand, monitoring the patient infrequently means the patient may forgo needed treatment and experience adverse events related to the disease. We propose a finite horizon and finite-state Markov decision process to define monitoring policies. To build our Markov decision process, we estimate stochastic models based on longitudinal observational data from electronic health records for a large cohort of patients seen in the national U.S. Veterans Affairs health system. We use our model to study policies for whether or when to assess the need for cholesterol-lowering medications. We further use our model to investigate the role of gender and race on optimal monitoring policies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心血管疾病预防性治疗背景下的监测政策。
预防慢性疾病是医疗保健的一个重要方面。为了预防慢性疾病,医生注重监测其风险因素并开出必要的药物。最佳监测策略取决于患者的危险因素和人口统计学。过于频繁的监测可能是不必要和昂贵的;另一方面,不经常监测患者意味着患者可能放弃必要的治疗并经历与疾病相关的不良事件。我们提出了一个有限视界和有限状态马尔可夫决策过程来定义监控策略。为了构建马尔可夫决策过程,我们基于美国退伍军人事务卫生系统中大量患者的电子健康记录的纵向观察数据来估计随机模型。我们使用我们的模型来研究是否或何时需要评估降胆固醇药物的政策。我们进一步使用我们的模型来调查性别和种族在最佳监测政策中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
期刊最新文献
Assessing the performance of Portuguese public hospitals before and during COVID-19 outbreak, with optimistic and pessimistic benchmarking approaches. A reinforcement learning approach for the online dynamic home health care scheduling problem. Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data. Forecasting to support EMS tactical planning: what is important and what is not. Health care management science for underserved populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1