Debaleena Chattopadhyay, Said Achmiz, Shivin Saxena, M. Bansal, D. Bolchini, Stephen Voida
{"title":"Holes, pits, and valleys: guiding large-display touchless interactions with data-morphed topographies","authors":"Debaleena Chattopadhyay, Said Achmiz, Shivin Saxena, M. Bansal, D. Bolchini, Stephen Voida","doi":"10.1145/2638728.2638736","DOIUrl":null,"url":null,"abstract":"Large, high-resolution displays enable efficient visualization of large datasets. To interact with these large datasets, touchless interfaces can support fluid interaction at different distances from the display. Touchless gestures, however, lack haptic feedback. Hence, users' gestures may unintentionally move off the interface elements and require additional physical effort to perform intended actions. To address this problem, we propose data-morphed topographies for touchless interactions: constraints on users' cursor movements that guide touchless interaction along the structure of the visualized data. To exemplify the potential of our concept, we envision applying three data-morphed topographies---holes, pits, and valleys---to common problem-solving tasks in visual analytics.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638728.2638736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Large, high-resolution displays enable efficient visualization of large datasets. To interact with these large datasets, touchless interfaces can support fluid interaction at different distances from the display. Touchless gestures, however, lack haptic feedback. Hence, users' gestures may unintentionally move off the interface elements and require additional physical effort to perform intended actions. To address this problem, we propose data-morphed topographies for touchless interactions: constraints on users' cursor movements that guide touchless interaction along the structure of the visualized data. To exemplify the potential of our concept, we envision applying three data-morphed topographies---holes, pits, and valleys---to common problem-solving tasks in visual analytics.