{"title":"The d-separation criterion in Categorical Probability","authors":"T. Fritz, Andreas Klingler","doi":"10.48550/arXiv.2207.05740","DOIUrl":null,"url":null,"abstract":"The d-separation criterion detects the compatibility of a joint probability distribution with a directed acyclic graph through certain conditional independences. In this work, we study this problem in the context of categorical probability theory by introducing a categorical definition of causal models, a categorical notion of d-separation, and proving an abstract version of the d-separation criterion. This approach has two main benefits. First, categorical d-separation is a very intuitive criterion based on topological connectedness. Second, our results apply both to measure-theoretic probability (with standard Borel spaces) and beyond probability theory, including to deterministic and possibilistic networks. It therefore provides a clean proof of the equivalence of local and global Markov properties with causal compatibility for continuous and mixed random variables as well as deterministic and possibilistic variables.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"7 1","pages":"46:1-46:49"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.05740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The d-separation criterion detects the compatibility of a joint probability distribution with a directed acyclic graph through certain conditional independences. In this work, we study this problem in the context of categorical probability theory by introducing a categorical definition of causal models, a categorical notion of d-separation, and proving an abstract version of the d-separation criterion. This approach has two main benefits. First, categorical d-separation is a very intuitive criterion based on topological connectedness. Second, our results apply both to measure-theoretic probability (with standard Borel spaces) and beyond probability theory, including to deterministic and possibilistic networks. It therefore provides a clean proof of the equivalence of local and global Markov properties with causal compatibility for continuous and mixed random variables as well as deterministic and possibilistic variables.