Evaluating machine learning models for engineering problems

Yoram Reich , S.V. Barai
{"title":"Evaluating machine learning models for engineering problems","authors":"Yoram Reich ,&nbsp;S.V. Barai","doi":"10.1016/S0954-1810(98)00021-1","DOIUrl":null,"url":null,"abstract":"<div><p>The use of machine learning (ML), and in particular, artificial neural networks (ANN), in engineering applications has increased dramatically over the last years. However, by and large, the development of such applications or their report lack proper evaluation. Deficient evaluation practice was observed in the general neural networks community and again in engineering applications through a survey we conducted of articles published in AI in Engineering and elsewhere. This status hinders understanding and prevents progress. This article goal is to remedy this situation. First, several evaluation methods are discussed with their relative qualities. Second, these qualities are illustrated by using the methods to evaluate ANN performance in two engineering problems. Third, a systematic evaluation procedure for ML is discussed. This procedure will lead to better evaluation of studies, and consequently to improved research and practice in the area of ML in engineering applications.</p></div>","PeriodicalId":100123,"journal":{"name":"Artificial Intelligence in Engineering","volume":"13 3","pages":"Pages 257-272"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0954-1810(98)00021-1","citationCount":"148","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0954181098000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

Abstract

The use of machine learning (ML), and in particular, artificial neural networks (ANN), in engineering applications has increased dramatically over the last years. However, by and large, the development of such applications or their report lack proper evaluation. Deficient evaluation practice was observed in the general neural networks community and again in engineering applications through a survey we conducted of articles published in AI in Engineering and elsewhere. This status hinders understanding and prevents progress. This article goal is to remedy this situation. First, several evaluation methods are discussed with their relative qualities. Second, these qualities are illustrated by using the methods to evaluate ANN performance in two engineering problems. Third, a systematic evaluation procedure for ML is discussed. This procedure will lead to better evaluation of studies, and consequently to improved research and practice in the area of ML in engineering applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估工程问题的机器学习模型
过去几年,机器学习(ML),特别是人工神经网络(ANN)在工程应用中的应用急剧增加。然而,总的来说,这些应用程序的开发或它们的报告缺乏适当的评估。通过我们对发表在《AI in engineering》和其他地方的文章进行的调查,在一般神经网络社区和工程应用中观察到缺乏评估实践。这种状态阻碍了理解并阻碍了进步。本文的目标就是纠正这种情况。首先,讨论了几种评价方法及其相对优劣。其次,通过评价人工神经网络在两个工程问题中的性能来说明这些特性。第三,讨论了机器学习的系统评价方法。这一过程将导致更好的研究评估,从而提高机器学习在工程应用领域的研究和实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume Contents Simulating behaviors of human situation awareness under high workloads Emergent synthesis of motion patterns for locomotion robots Synthesis and emergence — research overview Concept of self-reconfigurable modular robotic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1