Rapid determination of enzyme purity by a microdialysis-based assay

S. Richardson, G. Nilsson, N. Torto, L. Gorton, T. Laurell
{"title":"Rapid determination of enzyme purity by a microdialysis-based assay","authors":"S. Richardson, G. Nilsson, N. Torto, L. Gorton, T. Laurell","doi":"10.1039/A901895F","DOIUrl":null,"url":null,"abstract":"Microdialysis was shown to be useful as a fast on-line sampling method for determining the purity of starch hydrolysing enzymes. The enzymes were characterised using their hydrolytic properties. β-Amylases and pullulanases from different sources and/or manufacturers were investigated, with maltose, maltoheptaose, pullulan, and potato amylopectin starch (PAP) as substrates. The hydrolysis products were sampled via an on-line microdialysis probe and determined in a high-performance anion-exchange chromatographic (HPAEC) system. Comparison between the expected (theoretical) hydrolysis products with those obtained in the experiments made it possible to determine impurities in the enzymes. Two of the β-amylases and one pullulanase released unwanted hydrolysis products, indicating trace impurities in the enzyme preparation. Microdialysis sampling allows on-line sampling and eliminates separate sample preparation and clean-up steps. On-line microdialysis coupled to a HPAEC system is therefore a fast and simple technique for analysing enzyme hydrolysates.","PeriodicalId":7814,"journal":{"name":"Analytical Communications","volume":"12 1","pages":"189-193"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A901895F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Microdialysis was shown to be useful as a fast on-line sampling method for determining the purity of starch hydrolysing enzymes. The enzymes were characterised using their hydrolytic properties. β-Amylases and pullulanases from different sources and/or manufacturers were investigated, with maltose, maltoheptaose, pullulan, and potato amylopectin starch (PAP) as substrates. The hydrolysis products were sampled via an on-line microdialysis probe and determined in a high-performance anion-exchange chromatographic (HPAEC) system. Comparison between the expected (theoretical) hydrolysis products with those obtained in the experiments made it possible to determine impurities in the enzymes. Two of the β-amylases and one pullulanase released unwanted hydrolysis products, indicating trace impurities in the enzyme preparation. Microdialysis sampling allows on-line sampling and eliminates separate sample preparation and clean-up steps. On-line microdialysis coupled to a HPAEC system is therefore a fast and simple technique for analysing enzyme hydrolysates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用微透析法快速测定酶纯度
微透析被证明是一种有用的快速在线采样方法,用于测定淀粉水解酶的纯度。利用酶的水解特性对酶进行了表征。研究了来自不同来源和/或制造商的β-淀粉酶和普鲁兰酶,以麦芽糖、麦芽糖七糖、普鲁兰和马铃薯支链淀粉(PAP)为底物。水解产物通过在线微透析探针取样,并在高性能阴离子交换色谱(HPAEC)系统中测定。将预期的(理论的)水解产物与实验中得到的产物进行比较,可以确定酶中的杂质。两种β-淀粉酶和一种普鲁兰酶释放出不需要的水解产物,表明酶制剂中有微量杂质。微透析采样允许在线采样,并消除了单独的样品制备和清理步骤。因此,联机微透析耦合到HPAEC系统是一种快速和简单的分析酶水解物的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A water-soluble tetrazolium salt useful for colorimetric cell viability assay Determination of α,4-dihydroxy-3-methoxybenzeneacetic acid (vanilmandelic acid) by flow injection analysis coupled with luminol–hexacyanoferrate(III) chemiluminescence detection Electrochemical detection of aluminium using single-use sensors Recent developments in the analysis of light isotopes by continuous flow isotope ratio mass spectrometry FTIR spectroscopy as detection principle in aqueous flow analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1