A multidimensional data model with subcategories for flexibly capturing summarizability

S. Ariyan, L. Bertossi
{"title":"A multidimensional data model with subcategories for flexibly capturing summarizability","authors":"S. Ariyan, L. Bertossi","doi":"10.1145/2484838.2484857","DOIUrl":null,"url":null,"abstract":"In multidimensional (MD) databases and data warehouses we commonly prefer instances that have summarizable dimensions. This is because they have good properties for query answering. Most typically, with summarizable dimensions, precomputed and materialized aggregate query results at lower levels of the dimension hierarchy can be used to correctly compute results at higher levels of the same hierarchy, improving efficiency. Being summarizability such a desirable property, we argue that some established MD models cannot properly model the summarizability condition, and this is a consequence of the limited expressive power of the modeling languages. We propose an extension to the Hurtado-Meldelzon (HM) MD model with subcategories, the EHM model, and show that it allows to capture the summarizability. We propose an efficient algorithm that, for a given cube view (i.e. MD aggregate query) in an EHM database, determines from which minimal subset of precomputed cube views it can be correctly computed. Finally, we show how the EHM can be implemented with minor modifications to the familiar ROLAP schemas.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"7 1","pages":"6:1-6:12"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484838.2484857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In multidimensional (MD) databases and data warehouses we commonly prefer instances that have summarizable dimensions. This is because they have good properties for query answering. Most typically, with summarizable dimensions, precomputed and materialized aggregate query results at lower levels of the dimension hierarchy can be used to correctly compute results at higher levels of the same hierarchy, improving efficiency. Being summarizability such a desirable property, we argue that some established MD models cannot properly model the summarizability condition, and this is a consequence of the limited expressive power of the modeling languages. We propose an extension to the Hurtado-Meldelzon (HM) MD model with subcategories, the EHM model, and show that it allows to capture the summarizability. We propose an efficient algorithm that, for a given cube view (i.e. MD aggregate query) in an EHM database, determines from which minimal subset of precomputed cube views it can be correctly computed. Finally, we show how the EHM can be implemented with minor modifications to the familiar ROLAP schemas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有子类别的多维数据模型,可灵活地捕获摘要性
在多维(MD)数据库和数据仓库中,我们通常更喜欢具有可汇总维度的实例。这是因为它们具有很好的查询应答特性。最典型的是,对于可汇总的维度,可以使用维度层次结构较低级别上的预计算和物化的聚合查询结果来正确计算同一层次结构较高级别上的结果,从而提高效率。摘要性是一个理想的属性,我们认为一些已建立的MD模型不能正确地对摘要性条件进行建模,这是建模语言表达能力有限的结果。我们提出了一个扩展到Hurtado-Meldelzon (HM) MD模型的子类别,EHM模型,并表明它允许捕获摘要性。我们提出了一种有效的算法,对于EHM数据库中给定的多维数据集视图(即MD聚合查询),该算法确定可以从哪个预先计算的多维数据集视图的最小子集中正确计算它。最后,我们将展示如何通过对熟悉的ROLAP模式进行微小修改来实现EHM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Co-Evolution of Data-Centric Ecosystems. Data perturbation for outlier detection ensembles SLACID - sparse linear algebra in a column-oriented in-memory database system SensorBench: benchmarking approaches to processing wireless sensor network data Efficient data management and statistics with zero-copy integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1