Stitcher: Learned Workload Synthesis from Historical Performance Footprints

Chengcheng Wan, Yiwen Zhu, Joyce Cahoon, Wenjing Wang, K. Lin, Sean Liu, Raymond Truong, Neetu Singh, Alexandra Ciortea, Konstantinos Karanasos, Subru Krishnan
{"title":"Stitcher: Learned Workload Synthesis from Historical Performance Footprints","authors":"Chengcheng Wan, Yiwen Zhu, Joyce Cahoon, Wenjing Wang, K. Lin, Sean Liu, Raymond Truong, Neetu Singh, Alexandra Ciortea, Konstantinos Karanasos, Subru Krishnan","doi":"10.48786/edbt.2023.33","DOIUrl":null,"url":null,"abstract":"Database benchmarking and workload replay have been widely used to drive system design, evaluate workload performance, de-termine product evolution, and guide cloud migration. However, they both suffer from some key limitations: the former fails to capture the variety and complexity of production workloads; the latter requires access to user data, queries, and machine specifications, deeming it inapplicable in the face of user privacy concerns. Here we introduce our vision of learned workload synthesis to overcome these issues: given the performance profile of a customer workload (e.g., CPU/memory counters), synthesize a new workload that yields the same performance profile when executed on a range of hardware/software configurations. We present Stitcher as a first step towards realizing this vision, which synthesizes workloads by combining pieces from standard benchmarks. We believe that our vision will spark new research avenues in database workload replay.","PeriodicalId":88813,"journal":{"name":"Advances in database technology : proceedings. International Conference on Extending Database Technology","volume":"108 1","pages":"417-423"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in database technology : proceedings. International Conference on Extending Database Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48786/edbt.2023.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Database benchmarking and workload replay have been widely used to drive system design, evaluate workload performance, de-termine product evolution, and guide cloud migration. However, they both suffer from some key limitations: the former fails to capture the variety and complexity of production workloads; the latter requires access to user data, queries, and machine specifications, deeming it inapplicable in the face of user privacy concerns. Here we introduce our vision of learned workload synthesis to overcome these issues: given the performance profile of a customer workload (e.g., CPU/memory counters), synthesize a new workload that yields the same performance profile when executed on a range of hardware/software configurations. We present Stitcher as a first step towards realizing this vision, which synthesizes workloads by combining pieces from standard benchmarks. We believe that our vision will spark new research avenues in database workload replay.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缝制工:从历史性能足迹中学习工作量合成
数据库基准测试和工作负载重放已被广泛用于驱动系统设计、评估工作负载性能、确定产品演进和指导云迁移。然而,它们都有一些关键的局限性:前者无法捕捉生产工作负载的多样性和复杂性;后者需要访问用户数据、查询和机器规格,认为它在用户隐私问题面前不适用。在这里,我们介绍学习工作负载合成的愿景,以克服这些问题:给定客户工作负载的性能概要(例如,CPU/内存计数器),合成一个在一系列硬件/软件配置上执行时产生相同性能概要的新工作负载。我们将Stitcher作为实现这一愿景的第一步,它通过组合来自标准基准的片段来合成工作负载。我们相信,我们的愿景将在数据库工作负载重放方面激发新的研究途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computing Generic Abstractions from Application Datasets Fair Spatial Indexing: A paradigm for Group Spatial Fairness. Data Coverage for Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach Auditing for Spatial Fairness TransEdge: Supporting Efficient Read Queries Across Untrusted Edge Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1