The multi angular descriptor (MAD): a binary and gray images descriptor for shape recognition

The Hip Pub Date : 2013-08-24 DOI:10.1145/2501115.2501128
Raid Saabni
{"title":"The multi angular descriptor (MAD): a binary and gray images descriptor for shape recognition","authors":"Raid Saabni","doi":"10.1145/2501115.2501128","DOIUrl":null,"url":null,"abstract":"In this paper, we present the Multi Angular Descriptor (MAD), a new shape descriptor for shape based object recognition and image retrieval. In the binary case, the MAD descriptor captures the angular view to multi resolution rings from each contour point. Placing the rings in different heights enables capturing multi-level global/local features. In gray level, it captures the weighted distribution over relative positions of the shape points to multi resolution rings around the centroid. The multi angular descriptor is robust to noise and small deformations. Flexible parameters makes the MAD descriptor tunable to specific unique characteristics of the different tasks. The extension of the (MAD) descriptor to gray level shapes, can be seen as an extension of a shape context descriptor to be used with low quality gray level images avoiding poor results of the binarization process. Testing the proposed descriptor on the MNIST dataset [16] and a private dataset using two matching techniques gave better results comparing to the Shapes Context and the Histogram of Oriented Gradients (HOG) descriptors.","PeriodicalId":77938,"journal":{"name":"The Hip","volume":"92 1","pages":"53-58"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Hip","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501115.2501128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present the Multi Angular Descriptor (MAD), a new shape descriptor for shape based object recognition and image retrieval. In the binary case, the MAD descriptor captures the angular view to multi resolution rings from each contour point. Placing the rings in different heights enables capturing multi-level global/local features. In gray level, it captures the weighted distribution over relative positions of the shape points to multi resolution rings around the centroid. The multi angular descriptor is robust to noise and small deformations. Flexible parameters makes the MAD descriptor tunable to specific unique characteristics of the different tasks. The extension of the (MAD) descriptor to gray level shapes, can be seen as an extension of a shape context descriptor to be used with low quality gray level images avoiding poor results of the binarization process. Testing the proposed descriptor on the MNIST dataset [16] and a private dataset using two matching techniques gave better results comparing to the Shapes Context and the Histogram of Oriented Gradients (HOG) descriptors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多角度描述符(MAD):一种用于形状识别的二值和灰度图像描述符
本文提出了一种新的基于形状的物体识别和图像检索的形状描述子——多角度描述子(MAD)。在二进制情况下,MAD描述符从每个轮廓点捕获角度视图到多分辨率环。将环放置在不同的高度可以捕获多层次的全局/局部特征。在灰度级,它捕获形状点相对位置的加权分布到围绕质心的多分辨率环。多角度描述子对噪声和小变形具有较强的鲁棒性。灵活的参数使MAD描述符可针对不同任务的特定独特特征进行调整。将(MAD)描述符扩展到灰度级形状,可以看作是形状上下文描述符的扩展,用于低质量灰度级图像,避免了二值化过程的不良结果。使用两种匹配技术在MNIST数据集[16]和私有数据集上测试所提出的描述符,与形状上下文和定向梯度直方图(HOG)描述符相比,得到了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contextual word spotting in historical manuscripts using Markov logic networks Robust text and drawing segmentation algorithm for historical documents Feature space denoising improves word spotting 3D reconstruction for damaged documents: imaging of the great parchment book Automatic photometric restoration of historical photographic negatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1