{"title":"Exact Decomposition of Optimal Control Problems via Simultaneous Block Diagonalization of Matrices","authors":"Amirhossein Nazerian;Kshitij Bhatta;Francesco Sorrentino","doi":"10.1109/OJCSYS.2022.3231553","DOIUrl":null,"url":null,"abstract":"In this paper, we consider optimal control problems (OCPs) applied to large-scale linear dynamical systems with a large number of states and inputs. We attempt to reduce such problems into a set of independent OCPs of lower dimensions. Our decomposition is ‘exact’ in the sense that it preserves all the information about the original system and the objective function. Previous work in this area has focused on strategies that exploit symmetries of the underlying system and of the objective function. Here, instead, we implement the algebraic method of simultaneous block diagonalization of matrices (SBD), which we show provides advantages both in terms of the dimension of the subproblems that are obtained and of the computation time. We provide practical examples with networked systems that demonstrate the benefits of applying the SBD decomposition over the decomposition method based on group symmetries.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"24-35"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9996568","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9996568/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we consider optimal control problems (OCPs) applied to large-scale linear dynamical systems with a large number of states and inputs. We attempt to reduce such problems into a set of independent OCPs of lower dimensions. Our decomposition is ‘exact’ in the sense that it preserves all the information about the original system and the objective function. Previous work in this area has focused on strategies that exploit symmetries of the underlying system and of the objective function. Here, instead, we implement the algebraic method of simultaneous block diagonalization of matrices (SBD), which we show provides advantages both in terms of the dimension of the subproblems that are obtained and of the computation time. We provide practical examples with networked systems that demonstrate the benefits of applying the SBD decomposition over the decomposition method based on group symmetries.