Leidy Esperanza Pamplona-Beron, Carlos Alberto Henao Baena, A. F. Calvo-Salcedo
{"title":"Human activity recognition using penalized support vector machines and Hidden Markov Models in multimodal systems","authors":"Leidy Esperanza Pamplona-Beron, Carlos Alberto Henao Baena, A. F. Calvo-Salcedo","doi":"10.17533/UDEA.REDIN.20210532","DOIUrl":null,"url":null,"abstract":"Human activity detection has evolved due to the advances and developments of machine learning techniques, which have enabled solutions to new challenges without ignoring prevalent difficulties that need to be addressed. One of the challenges is the learning model’s sensitivity regarding the unbalanced, atypical, and overlapping information that directly affects the performance of the model. This article evaluates a methodology for the classification of human activities that penalizes defective information. The methodology is carried out through two redundant classifiers, a penalized support vector machine that detects the sub-movements (micromovements) and the Marvok Hidden Model that predicts the activity given the micromovements sequence. The performance of the method was compared with state-of-the-art techniques, and the findings suggested significative advance in the detection of micro-movements compared to the data obtained with non-penalized paradigms. In this research, an adequate performance is found in the classification of primitive movements, with hit rates of 95.15% for the Kinect One®, 96.86% for the IMU sensor network, and 67.51% for the EMG sensor network.","PeriodicalId":21428,"journal":{"name":"Revista Facultad De Ingenieria-universidad De Antioquia","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Facultad De Ingenieria-universidad De Antioquia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17533/UDEA.REDIN.20210532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Human activity detection has evolved due to the advances and developments of machine learning techniques, which have enabled solutions to new challenges without ignoring prevalent difficulties that need to be addressed. One of the challenges is the learning model’s sensitivity regarding the unbalanced, atypical, and overlapping information that directly affects the performance of the model. This article evaluates a methodology for the classification of human activities that penalizes defective information. The methodology is carried out through two redundant classifiers, a penalized support vector machine that detects the sub-movements (micromovements) and the Marvok Hidden Model that predicts the activity given the micromovements sequence. The performance of the method was compared with state-of-the-art techniques, and the findings suggested significative advance in the detection of micro-movements compared to the data obtained with non-penalized paradigms. In this research, an adequate performance is found in the classification of primitive movements, with hit rates of 95.15% for the Kinect One®, 96.86% for the IMU sensor network, and 67.51% for the EMG sensor network.
期刊介绍:
Revista Facultad de Ingenieria started in 1984 and is a publication of the School of Engineering at the University of Antioquia.
The main objective of the journal is to promote and stimulate the publishing of national and international scientific research results. The journal publishes original articles, resulting from scientific research, experimental and or simulation studies in engineering sciences, technology, and similar disciplines (Electronics, Telecommunications, Bioengineering, Biotechnology, Electrical, Computer Science, Mechanical, Chemical, Environmental, Materials, Sanitary, Civil and Industrial Engineering).
In exceptional cases, the journal will publish insightful articles related to current important subjects, or revision articles representing a significant contribution to the contextualization of the state of the art in a known relevant topic. Case reports will only be published when those cases are related to studies in which the validity of a methodology is being proven for the first time, or when a significant contribution to the knowledge of an unexplored system can be proven.
All published articles have undergone a peer review process, carried out by experts recognized for their knowledge and contributions to the relevant field.
To adapt the Journal to international standards and to promote the visibility of the published articles; and therefore, to have a greater impact in the global academic community, after November 1st 2013, the journal will accept only manuscripts written in English for reviewing and publication.
Revista Facultad de Ingeniería –redin is entirely financed by University of Antioquia
Since 2015, every article accepted for publication in the journal is assigned a DOI number.