D. R. Scott, H. Cho, C. K. Day, A. Deller, M. Głowacki, K. Gourdji, K. Bannister, A. Bera, S. Bhandari, C. W. James, R. I. F. S. Research, C. University, C. F. A. HarvardSmithsonian, D. Physics, M. University, Centre for Gravitational Astrophysics, Supercomputing, S. U. Technology, Csiro Space, Astronomy, Australia Telescope National Facility, Astron, N. F. F. R. Astronomy, J. Eric, A. G. I. F. Astronomy, U. Amsterdam
{"title":"CELEBI: The CRAFT Effortless Localisation and Enhanced Burst Inspection pipeline","authors":"D. R. Scott, H. Cho, C. K. Day, A. Deller, M. Głowacki, K. Gourdji, K. Bannister, A. Bera, S. Bhandari, C. W. James, R. I. F. S. Research, C. University, C. F. A. HarvardSmithsonian, D. Physics, M. University, Centre for Gravitational Astrophysics, Supercomputing, S. U. Technology, Csiro Space, Astronomy, Australia Telescope National Facility, Astron, N. F. F. R. Astronomy, J. Eric, A. G. I. F. Astronomy, U. Amsterdam","doi":"10.2139/ssrn.4347158","DOIUrl":null,"url":null,"abstract":"Fast radio bursts (FRBs) are being detected with increasing regularity. However, their spontaneous and often once-off nature makes high-precision burst position and frequency-time structure measurements difficult without specialised real-time detection techniques and instrumentation. The Australian Square Kilometre Array Pathfinder (ASKAP) has been enabled by the Commensal Real-time ASKAP Fast Transients Collaboration (CRAFT) to detect FRBs in real-time and save raw antenna voltages containing FRB detections. We present the CRAFT Effortless Localisation and Enhanced Burst Inspection pipeline (CELEBI), an automated software pipeline that extends CRAFT's existing software to process ASKAP voltages in order to produce sub-arcsecond precision localisations and polarimetric data at time resolutions as fine as 3 ns of FRB events. We use Nextflow to link together Bash and Python code that performs software correlation, interferometric imaging, and beamforming, making use of common astronomical software packages.","PeriodicalId":8590,"journal":{"name":"Astron. Comput.","volume":"19 1","pages":"100724"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astron. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4347158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fast radio bursts (FRBs) are being detected with increasing regularity. However, their spontaneous and often once-off nature makes high-precision burst position and frequency-time structure measurements difficult without specialised real-time detection techniques and instrumentation. The Australian Square Kilometre Array Pathfinder (ASKAP) has been enabled by the Commensal Real-time ASKAP Fast Transients Collaboration (CRAFT) to detect FRBs in real-time and save raw antenna voltages containing FRB detections. We present the CRAFT Effortless Localisation and Enhanced Burst Inspection pipeline (CELEBI), an automated software pipeline that extends CRAFT's existing software to process ASKAP voltages in order to produce sub-arcsecond precision localisations and polarimetric data at time resolutions as fine as 3 ns of FRB events. We use Nextflow to link together Bash and Python code that performs software correlation, interferometric imaging, and beamforming, making use of common astronomical software packages.