Optimisation of Left Atrial Feature Tracking Using Retrospective Gated Computed Tomography Images.

Charles Sillett, Orod Razeghi, Marina Strocchi, Caroline H Roney, Hugh O'Brien, Daniel B Ennis, Ulrike Haberland, Ronak Rajani, Christopher A Rinaldi, Steven A Niederer
{"title":"Optimisation of Left Atrial Feature Tracking Using Retrospective Gated Computed Tomography Images.","authors":"Charles Sillett, Orod Razeghi, Marina Strocchi, Caroline H Roney, Hugh O'Brien, Daniel B Ennis, Ulrike Haberland, Ronak Rajani, Christopher A Rinaldi, Steven A Niederer","doi":"10.1007/978-3-030-78710-3_8","DOIUrl":null,"url":null,"abstract":"<p><p>Retrospective gated cardiac computed tomography (CCT) images can provide high contrast and resolution images of the heart throughout the cardiac cycle. Feature tracking in retrospective CCT images using the temporal sparse free-form deformations (TSFFDs) registration method has previously been optimised for the left ventricle (LV). However, there is limited work on optimising nonrigid registration methods for feature tracking in the left atria (LA). This paper systematically optimises the sparsity weight (SW) and bending energy (BE) as two hyperparameters of the TSFFD method to track the LA endocardium from end-diastole (ED) to end-systole (ES) using 10-frame retrospective gated CCT images. The effect of two different control point (CP) grid resolutions was also investigated. TSFFD optimisation was achieved using the average surface distance (ASD), directed Hausdorff distance (DHD) and Dice score between the registered and ground truth surface meshes and segmentations at ES. For baseline comparison, the configuration optimised for LV feature tracking gave errors across the cohort of 0.826 ± 0.172mm ASD, 5.882 ± 1.524mm DHD, and 0.912 ± 0.033 Dice score. Optimising the SW and BE hyperparameters improved the TSFFD performance in tracking LA features, with case specific optimisations giving errors across the cohort of 0.750 ± 0.144mm ASD, 5.096 ± 1.246mm DHD, and 0.919 ± 0.029 Dice score. Increasing the CP resolution and optimising the SW and BE further improved tracking performance, with case specific optimisation errors of 0.372 ± 0.051mm ASD, 2.739 ± 0.843mm DHD and 0.949 ± 0.018 Dice score across the cohort. We therefore show LA feature tracking using TSFFDs is improved through a chamber-specific optimised configuration.</p>","PeriodicalId":73120,"journal":{"name":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","volume":"12738 ","pages":"71-83"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170531/pdf/nihms-1809986.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional imaging and modeling of the heart : ... International Workshop, FIMH ..., proceedings. FIMH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-78710-3_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Retrospective gated cardiac computed tomography (CCT) images can provide high contrast and resolution images of the heart throughout the cardiac cycle. Feature tracking in retrospective CCT images using the temporal sparse free-form deformations (TSFFDs) registration method has previously been optimised for the left ventricle (LV). However, there is limited work on optimising nonrigid registration methods for feature tracking in the left atria (LA). This paper systematically optimises the sparsity weight (SW) and bending energy (BE) as two hyperparameters of the TSFFD method to track the LA endocardium from end-diastole (ED) to end-systole (ES) using 10-frame retrospective gated CCT images. The effect of two different control point (CP) grid resolutions was also investigated. TSFFD optimisation was achieved using the average surface distance (ASD), directed Hausdorff distance (DHD) and Dice score between the registered and ground truth surface meshes and segmentations at ES. For baseline comparison, the configuration optimised for LV feature tracking gave errors across the cohort of 0.826 ± 0.172mm ASD, 5.882 ± 1.524mm DHD, and 0.912 ± 0.033 Dice score. Optimising the SW and BE hyperparameters improved the TSFFD performance in tracking LA features, with case specific optimisations giving errors across the cohort of 0.750 ± 0.144mm ASD, 5.096 ± 1.246mm DHD, and 0.919 ± 0.029 Dice score. Increasing the CP resolution and optimising the SW and BE further improved tracking performance, with case specific optimisation errors of 0.372 ± 0.051mm ASD, 2.739 ± 0.843mm DHD and 0.949 ± 0.018 Dice score across the cohort. We therefore show LA feature tracking using TSFFDs is improved through a chamber-specific optimised configuration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用回顾性门控计算机断层扫描图像优化左心房特征跟踪。
回顾性门控心脏计算机断层扫描(CCT)图像可以提供整个心动周期的心脏的高对比度和分辨率图像。使用时间稀疏自由变形(TSFFD)配准方法的回顾性CCT图像中的特征跟踪先前已针对左心室(LV)进行了优化。然而,在优化用于左心房(LA)特征跟踪的非刚性配准方法方面的工作有限。本文系统地优化了稀疏权重(SW)和弯曲能量(BE)作为TSFFD方法的两个超参数,使用10帧回顾性门控CCT图像跟踪左心房心内膜从舒张末期(ED)到收缩末期(ES)。还研究了两种不同控制点(CP)网格分辨率的影响。TSFFD优化是使用注册和地面实况表面网格之间的平均表面距离(ASD)、定向豪斯多夫距离(DHD)和Dice分数实现的,并在ES进行分割。对于基线比较,为左心室特征跟踪优化的配置在整个队列中给出了0.826±0.172mm ASD、5.882±1.524mm DHD和0.912±0.033 Dice分数的误差。优化SW和BE超参数提高了TSFFD跟踪LA特征的性能,针对具体病例的优化在整个队列中给出了0.750±0.144mm ASD、5.096±1.246mm DHD和0.919±0.029 Dice评分的误差。提高CP分辨率并优化SW和BE进一步提高了跟踪性能,整个队列的特定病例优化误差为0.372±0.051mm ASD、2.739±0.843mm DHD和0.949±0.018 Dice评分。因此,我们展示了使用TSFFD的LA特征跟踪通过特定于腔室的优化配置得到了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Micro-anatomical Model of the Infarcted Left Ventricle Border Zone to Study the Influence of Collagen Undulation. On the possibility of estimating myocardial fiber architecture from cardiac strains. Prototype of a Cardiac MRI Simulator for the Training of Supervised Neural Networks Extraction of volumetric indices from echocardiography: which deep learning solution for clinical use? Automatic Aortic Valve Pathology Detection from 3-Chamber Cine MRI with Spatio-Temporal Attention Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1