Sequential Hypothesis Testing in Machine Learning, and Crude Oil Price Jump Size Detection

Michael Roberts, I. Sengupta
{"title":"Sequential Hypothesis Testing in Machine Learning, and Crude Oil Price Jump Size Detection","authors":"Michael Roberts, I. Sengupta","doi":"10.1080/1350486X.2020.1859943","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we present a sequential hypothesis test for the detection of the distribution of jump size in Lévy processes. Infinitesimal generators for the corresponding log-likelihood ratios are presented and analysed. Bounds for infinitesimal generators in terms of super-solutions and sub-solutions are computed. This is shown to be implementable in relation to various classification problems for a crude oil price data set. Machine and deep learning algorithms are implemented to extract a specific deterministic component from the data set, and the deterministic component is implemented to improve the Barndorff-Nielsen & Shephard model, a commonly used stochastic model for derivative and commodity market analysis.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"55 1","pages":"374 - 395"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2020.1859943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

Abstract

ABSTRACT In this paper, we present a sequential hypothesis test for the detection of the distribution of jump size in Lévy processes. Infinitesimal generators for the corresponding log-likelihood ratios are presented and analysed. Bounds for infinitesimal generators in terms of super-solutions and sub-solutions are computed. This is shown to be implementable in relation to various classification problems for a crude oil price data set. Machine and deep learning algorithms are implemented to extract a specific deterministic component from the data set, and the deterministic component is implemented to improve the Barndorff-Nielsen & Shephard model, a commonly used stochastic model for derivative and commodity market analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习中的序贯假设检验与原油价格跳跃大小检测
摘要本文提出了一种序贯假设检验,用于检测lsamvy过程中跳跃大小的分布。给出了相应对数似然比的无穷小发生器,并对其进行了分析。用超解和子解计算了无穷小发生器的界。这在原油价格数据集的各种分类问题中是可实现的。机器和深度学习算法用于从数据集中提取特定的确定性成分,并实现确定性成分来改进Barndorff-Nielsen & Shephard模型,这是一种用于衍生品和商品市场分析的常用随机模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1