{"title":"Enhancing Neurological Competence of Nanoencapsulated Cordyceps/Turmeric Extracts in Human Neuroblastoma SH-SY5Y Cells.","authors":"Palakorn Kaokaen, Natchadaporn Sorraksa, Ruchee Phonchai, Nipha Chaicharoenaudomrung, Phongsakorn Kunhorm, Parinya Noisa","doi":"10.1007/s12195-022-00752-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neurological diseases, including Alzheimer's, Parkinson's diseases, and brain cancers, are reportedly caused by genetic aberration and cellular malfunction. Herbs with bioactive compounds that have anti-oxidant effects such as cordyceps and turmeric, are of interest to clinical applications due to their minimal adverse effects. The aim of study is to develop the nanoencapsulated cordyceps and turmeric extracts and investigate their capability to enhance the biological activity and improve neuronal function.</p><p><strong>Methods: </strong>Human neuroblastoma SH-SY5Y cells were utilized as a neuronal model to investigate the properties of nanoencapsulated cordyceps or turmeric extracts, called CMP and TEP, respectively. SH-SY5Y cells were treated with either CMP or TEP and examined the biological consequences, including neuronal maturation and neuronal function.</p><p><strong>Results: </strong>The results showed that both CMP and TEP improved cellular uptake efficiency within 6 h by 2.3 and 2.8 times, respectively. Besides, they were able to inhibit cellular proliferation of SH-SY5Y cells up to 153- and 218-fold changes, and increase the expression of mature neuronal markers (<i>TUJ1</i>, <i>PAX6</i>, and <i>NESTIN</i>). Upon the treatment of CMP and TEP, the expression of dopaminergic-specific genes (<i>LMX1B</i>, <i>FOXA2</i>, <i>EN1</i>, and <i>NURR1</i>), and the secretion level of dopamine were significantly improved up to 3.3-fold and 3.0-fold, respectively, while the expression of Alzheimer genes (<i>PSEN1</i>, <i>PSEN2</i>, and <i>APP</i>), and the secretion of amyloid precursor protein were significantly reduced by 32-fold and 108-fold, respectively. Importantly, the autophagy activity was upregulated by CMP and TEP at 6.3- and 5.5-fold changes, respectively.</p><p><strong>Conclusions: </strong>This finding suggested that the nanoencapsulated cordyceps and turmeric extracts accelerated neuronal maturation and alleviated neuronal pathology in human neural cells. This paves the way for nanotechnology-driven drug delivery systems that could potentially be used as an alternative medicine in the future for neurological diseases.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 1","pages":"81-93"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9842810/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-022-00752-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2
Abstract
Introduction: Neurological diseases, including Alzheimer's, Parkinson's diseases, and brain cancers, are reportedly caused by genetic aberration and cellular malfunction. Herbs with bioactive compounds that have anti-oxidant effects such as cordyceps and turmeric, are of interest to clinical applications due to their minimal adverse effects. The aim of study is to develop the nanoencapsulated cordyceps and turmeric extracts and investigate their capability to enhance the biological activity and improve neuronal function.
Methods: Human neuroblastoma SH-SY5Y cells were utilized as a neuronal model to investigate the properties of nanoencapsulated cordyceps or turmeric extracts, called CMP and TEP, respectively. SH-SY5Y cells were treated with either CMP or TEP and examined the biological consequences, including neuronal maturation and neuronal function.
Results: The results showed that both CMP and TEP improved cellular uptake efficiency within 6 h by 2.3 and 2.8 times, respectively. Besides, they were able to inhibit cellular proliferation of SH-SY5Y cells up to 153- and 218-fold changes, and increase the expression of mature neuronal markers (TUJ1, PAX6, and NESTIN). Upon the treatment of CMP and TEP, the expression of dopaminergic-specific genes (LMX1B, FOXA2, EN1, and NURR1), and the secretion level of dopamine were significantly improved up to 3.3-fold and 3.0-fold, respectively, while the expression of Alzheimer genes (PSEN1, PSEN2, and APP), and the secretion of amyloid precursor protein were significantly reduced by 32-fold and 108-fold, respectively. Importantly, the autophagy activity was upregulated by CMP and TEP at 6.3- and 5.5-fold changes, respectively.
Conclusions: This finding suggested that the nanoencapsulated cordyceps and turmeric extracts accelerated neuronal maturation and alleviated neuronal pathology in human neural cells. This paves the way for nanotechnology-driven drug delivery systems that could potentially be used as an alternative medicine in the future for neurological diseases.
期刊介绍:
The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas:
Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example.
Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions.
Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress.
Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.