Pathway prediction using similar users and the N-gram model

Kanta Kawase, R. Thawonmas
{"title":"Pathway prediction using similar users and the N-gram model","authors":"Kanta Kawase, R. Thawonmas","doi":"10.1109/ICAWST.2013.6765422","DOIUrl":null,"url":null,"abstract":"This paper is about our research on user pathway prediction for being applied to a location aware system. In particular, we propose a prediction method based on an jV-gram model with Kneser-Ney smoothing (KNS), originally developed by other researchers for statistical language model smoothing, and introduce the use of the transition information of similar users into KNS. We then verify the performance of the proposed prediction method by comparing it with an existing prediction method and a prediction method based on KNS using all users' information. The comparison result reveals that the proposed method outperforms its counterparts on all performance metrics: precision, recall, F-measure, and CA.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"98 1","pages":"131-136"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is about our research on user pathway prediction for being applied to a location aware system. In particular, we propose a prediction method based on an jV-gram model with Kneser-Ney smoothing (KNS), originally developed by other researchers for statistical language model smoothing, and introduce the use of the transition information of similar users into KNS. We then verify the performance of the proposed prediction method by comparing it with an existing prediction method and a prediction method based on KNS using all users' information. The comparison result reveals that the proposed method outperforms its counterparts on all performance metrics: precision, recall, F-measure, and CA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用相似用户和N-gram模型的路径预测
本文主要研究了应用于位置感知系统的用户路径预测方法。特别地,我们提出了一种基于jV-gram模型和Kneser-Ney平滑(KNS)的预测方法,这是其他研究人员最初为统计语言模型平滑而开发的,并将相似用户的过渡信息引入到KNS中。然后,我们通过将所提出的预测方法与现有的预测方法和基于KNS的使用所有用户信息的预测方法进行比较,验证了所提出的预测方法的性能。比较结果表明,该方法在所有性能指标上都优于同类方法:精度、召回率、F-measure和CA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
784
期刊最新文献
Make decision boundary smoother by transition learning Neurophysiological evidence of the cognitive cycle and the emergence of awareness An efficient implementation of normalized cross-correlation image matching based on pyramid A hybrid recommender system based non-common items in social media "Canderoid": A mobile system to remotely monitor travelling status of the elderly with dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1