{"title":"Investigation of Indoor Air Quality of Residential Buildings in Enugu, Nigeria","authors":"Ezezue Am, D. Jo","doi":"10.4172/2168-9717.1000206","DOIUrl":null,"url":null,"abstract":"Consideration of indoor air quality is a known practice in building and home design in developed Countries, and appropriate measures are taken during design for residential health. This is not so in developing economies. There is a dearth of research work on indoor air quality. Yet there is high level of exposure of the population to indoor air pollutants in residential buildings in these regions of the world. Building designers are yet to consider this problem in their designs. A major cause of indoor air pollution is the traditional method of cooking using dirty fuels. At present, no designs in these regions take cognizance of the use of these dirty fuels. This study addresses the problem of indoor air pollution of residential buildings in these areas. The study adopts ‘International Environmental Protection Agencies’ Evaluation Methodology, involving the use of Building Physics Equipment; Light House Laser Particle Counters; Carbon Monoxide and Extech DCO 1001, that measures particulates, carbon monoxide, indoor relative humidity, indoor temperature, and carbon dioxide quality respectively. Subjective assessment using questionnaire is also adopted. The data were analyzed with Statistical Package for the Social Sciences (SPSS). The results reveal that indoor air quality problem is common in the study area. The major pollutants identified in the study included: gases, steam, particles of dust and fibers, most of which are from internal indoor combustions. The result of the analysis also reveals that the factor loadings yielded a high cumulative percentage of the measured variables, in other words, a high concentration of the pollutants in the indoor air mass. The study recommends a new approach in residential buildings design that ensures immediate removal of indoor air pollutants from their source of generation.","PeriodicalId":15092,"journal":{"name":"Journal of Architectural Engineering Technology","volume":"37 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Architectural Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9717.1000206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Consideration of indoor air quality is a known practice in building and home design in developed Countries, and appropriate measures are taken during design for residential health. This is not so in developing economies. There is a dearth of research work on indoor air quality. Yet there is high level of exposure of the population to indoor air pollutants in residential buildings in these regions of the world. Building designers are yet to consider this problem in their designs. A major cause of indoor air pollution is the traditional method of cooking using dirty fuels. At present, no designs in these regions take cognizance of the use of these dirty fuels. This study addresses the problem of indoor air pollution of residential buildings in these areas. The study adopts ‘International Environmental Protection Agencies’ Evaluation Methodology, involving the use of Building Physics Equipment; Light House Laser Particle Counters; Carbon Monoxide and Extech DCO 1001, that measures particulates, carbon monoxide, indoor relative humidity, indoor temperature, and carbon dioxide quality respectively. Subjective assessment using questionnaire is also adopted. The data were analyzed with Statistical Package for the Social Sciences (SPSS). The results reveal that indoor air quality problem is common in the study area. The major pollutants identified in the study included: gases, steam, particles of dust and fibers, most of which are from internal indoor combustions. The result of the analysis also reveals that the factor loadings yielded a high cumulative percentage of the measured variables, in other words, a high concentration of the pollutants in the indoor air mass. The study recommends a new approach in residential buildings design that ensures immediate removal of indoor air pollutants from their source of generation.